CURRICULUM

B.TECH (2019 SCHEME)

CURRICULUM I TO VIII: B.TECH CIVIL ENGINEERING

Every course of B. Tech. Program shall be placed in one of the nine categories as listed in table below.

SI. No	Category	Code	Credit \mathbf{s}
1	Humanities and Social Sciences including Management courses	HMC	8
2	Basic Science courses	BSC	26
3	Engineering Science Courses	ESC	22
4	Program Core Courses	PCC	76
5	Program Elective Courses	PEC	15
6	Open Elective Courses	OEC	3
7	Project work and Seminar	MNC	-----
8	Mandatory Non-credit Courses (P/F) with grade	MSA	2
9	Mandatory Student Activities (P/F)	Total Mandatory Credits	162
		VAC	20
10	Value Added Course (Optional)		

No semester shall have more than six lecture-based courses and two laboratory and/or drawing/seminar/project courses in the curriculum. Semester-wise credit distribution shall be as below:

Sem	1	2	3	4	5	6	7	8	Total
Credits	17	21	22	22	23	23	15	17	160
Activity Points	50				18		50		---
Credits for Activity	2								2
G.Total									162

Basic Science Courses: Maths, Physics, Chemistry, Biology for Engineers, Life Science etc
Engineering science courses: Basic Electrical, Engineering Graphics, Programming, Workshop, Basic Electronics, Basic Civil, Engineering Mechanics, Mechanical Engineering, Thermodynamics, , Design Engineering, Materials Engineering etc.

Humanities and Social Sciences including Management courses: English, Humanities, Professional Communication, Management, Finance \& Accounting, Life Skills, Professional Communication, Economics etc.

Mandatory non-credit courses: Sustainable Engineering, Constitution of India/Essence of Indian Knowledge Tradition, Industrial Safety Engineering, disaster management etc.
Course Code and Course Number
Each course is denoted by a unique code consisting of three alphabets followed by three numerals like E C
L 20 1. The first two letter code refers to the department offering the course. EC stands for course in Electronics \& Communication, course code MA refers to a course in Mathematics, course code ES refers to a course in Engineering Science etc. Third letter stands for the nature of the course as indicated in the Table 1.

Table 1: Code for the courses

Code	Description
T	Theory based courses (other the lecture hours, these courses can have tutorial and practical hours, e.g., L-T-P structures 3-0-0, 3-1-2, 3-0-2 etc.)
L	Laboratory based courses (where performance is evaluated primarily on the basis of practical or laboratory work with LTP structures like 0-0-3, 1-0-3, 0-1-3 etc.)
N	Non-credit courses
D	Project based courses (Major, Mini Projects)
Q	Seminar Courses

Course Number is a three digit number and the first digit refers to the Academic year in which the course is normally offered, i.e. $1,2,3$, or 4 for the B. Tech. Programme of four year duration. Of the other two digits, the last digit identifies whether the course is offered normally in the odd (odd number), even (even number) or in both the semesters (zero). The middle number could be any digit. ECL 201 is a laboratory course offered in EC department for third semester, MAT 101 is a course in Mathematics offered in the first semester, EET 344 is a course in Electrical Engineering offered in the sixth semester, PHT 110 is a course in Physics offered both the first and second semesters, EST 102 is a course in Basic Engineering offered by one or many departments. These course numbers are to be given in the curriculum and syllabi.

Departments

Each course is offered by a Department and their two-letter course prefix is given in Table 2.
Table 2: Departments and their codes

SI.N \mathbf{o}	Department	Course Prefix	SI.No	Department	Course Prefix
01	Aeronautical Engg	AO	16	Information Technology	IT
02	 Instrumentation	AE	17	 Control	IC
03	Automobile	AU	18	Mandatory Courses	MC
04	Biomedical Engg	BM	19	Mathematics	MA
05	Biotechnology	BT	20	Mechanical Engg	ME
06	Chemical Engg	CH	21	Mechatronics	MR
07	Chemistry	CY	22	Metallurgy	MT
08	Civil Engg	CE	23	Mechanical (Auto)	MU
09	Computer Science	CS	24	Mechanical(Prod)	MP
10	Electrical \& Electronics	EE	25	Naval \& Ship Building	SB
11	Electronics \& Biomedical	EB	26	Physics	PH
12	 Communication	EC	27	Polymer Engg	PO
13	Food Technology	FT	28	Production Engg	PE
14	Humanities	HU	29	Robotics and Automation	RA
15	Industrial Engg	IE	30	Safety \& Fire Engg	FS

SEMESTER I

$\begin{aligned} & \text { SLO } \\ & T \end{aligned}$	COURSE NO.	COURSES	L-T-P	HOUR S	CREDIT
A	MAT 101	LINEAR ALGEBRA AND CALCULUS	3-1-0	4	4
$\begin{gathered} \mathrm{B} \\ 1 / 2 \end{gathered}$	PHT 110	ENGINEERING PHYSICS B	3-1-0	4	4
	CYT 100	ENGINEERING CHEMISTRY	3-1-0	4	4
$\begin{gathered} C \\ 1 / 2 \end{gathered}$	EST 100	ENGINEERING MECHANICS	2-1-0	3	3
	EST 110	ENGINEERING GRAPHICS	2-0-2	4	3
$\begin{gathered} \hline \mathrm{D} \\ 1 / 2 \end{gathered}$	EST 120	BASICS OF CIVIL \& MECHANICAL ENGINEERING	4-0-0	4	4
	EST 130	BASICS OF ELECTRICAL \& ELECTRONICS ENGINEERING	4-0-0	4	4
E	HUN 101	LIFE SKILLS	2-0-2	4	--
$\begin{gathered} \mathrm{S} \\ 1 / 2 \end{gathered}$	PHL 120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
$\begin{gathered} \hline \mathrm{T} \\ 1 / 2 \end{gathered}$	ESL 120	CIVIL \& MECHANICAL WORKSHOP	0-0-2	2	1
	ESL 130	ELECTRICAL \& ELECTRONICS WORKSHOP	0-0-2	2	1
		TOTAL		23/24 *	17

*Minimum hours per week

NOTE:
To make up for the hours lost due to induction program, one extra hour may be
allotted to each course

SEMESTER II

$\begin{aligned} & \text { SLO } \\ & \mathrm{T} \end{aligned}$	COURSE NO.	COURSES	L-T-P	$\begin{aligned} & \text { HOUR } \\ & \mathrm{S} \end{aligned}$	$\begin{gathered} \text { CREDI } \\ \text { T } \end{gathered}$
A	MAT 102	VECTOR CALCULUS, DIFFERENTIAL EQUATIONS AND TRANSFORMS	3-1-0	4	4
$\begin{gathered} B \\ 1 / 2 \end{gathered}$	PHT 110	ENGINEERING PHYSICS B	3-1-0	4	4
	CYT 100	ENGINEERING CHEMISTRY	3-1-0	4	4
$\begin{gathered} C \\ 1 / 2 \end{gathered}$	EST 100	ENGINEERING MECHANICS	2-1-0	3	3
	EST 110	ENGINEERING GRAPHICS	2-0-2	4	3
$\begin{gathered} \hline \mathrm{D} \\ 1 / 2 \end{gathered}$	EST 120	BASICS OF CIVIL \& MECHANICAL ENGINEERING	4-0-0	4	4
	EST 130	BASICS OF ELECTRICAL \& ELECTRONICS ENGINEERING	4-0-0	4	4
E	HUN 102	PROFESSIONAL COMMUNICATION	2-0-2	4	--
F	EST 102	PROGRAMMING IN C	2-1-2	5	4
$\begin{gathered} \hline \mathrm{S} \\ 1 / 2 \end{gathered}$	PHL 120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
$\begin{gathered} \mathrm{T} \\ 1 / 2 \end{gathered}$	ESL 120	CIVIL \& MECHANICAL WORKSHOP	0-0-2	2	1
	ESL 130	ELECTRICAL \& ELECTRONICS WORKSHOP	0-0-2	2	1
TOTAL				28/29	21

NOTE:

1. Engineering Physics B and Engineering Chemistry shall be offered in both semesters. Institutions can advise students belonging to about 50\% of the number of branches in the Institution to opt for Engineering Physics B in SI and Engineering Chemistry in S2 \& vice versa. Students opting for Engineering Physics B in a semester should attend Physics Lab in the same semester and students opting for Engineering Chemistry in one semester should attend Engineering Chemistry Lab in the same semester.
2. Engineering Mechanics and Engineering Graphics shall be offered in both semesters. Institutions can advise students belonging to about 50\% of the number of branches in the Institution to opt for Engineering Mechanics in SI and Engineering Graphics in S2 \& vice versa.
3. Basics of Civil \& Mechanical Engineering and Basics of Electrical \& Electronics Engineering shall be offered in both semesters. Basics of Civil \& Mechanical Engineering contain equal weightage for Civil Engineering and Mechanical Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to branches of AEI, EI, BME, ECE, EEE, ICE, CSE, IT, RA can choose this course in S1.

Basics of Electrical \& Electronics Engineering contain equal weightage for Electrical Engineering and Electronics Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to AERO, AUTO, CE, FSE, IE, ME, MECHATRONICS, PE, METTULURGY, BT, BCE, CHEM, FT, POLY can choose this course in S1. Students having Basics of Civil \& Mechanical Engineering in one semester should attend Civil \& Mechanical Workshop in the same semester and students having Basics of Electrical \& Electronics Engineering in a semester should attend Electrical \& Electronics Workshop in the same semester.
4. LIFE SKILLS

Life skills are those competencies that provide the means for an individual to be resourceful and positive while taking on life's vicissitudes. Development of one's personality by being aware of the self, connecting with others, reflecting on the abstract and the concrete, leading and generating change, and staying rooted in time-tested values and principles is being aimed at. This course is designed to enhance the employability and maximize the potential of the students by introducing them to the principles that underlie personal and professional success, and help them acquire the skills needed to apply these principles in their lives and careers.

5. PROFESSIONAL COMMUNICATION

Objective is to develop in the under-graduate students of engineering a level of competence in English required for independent and effective communication for their professional needs. Coverage: Listening, Barriers to listening, Steps to overcome them, Purposive listening practice, Use of technology in the professional world. Speaking, Fluency \& accuracy in speech, Positive thinking, Improving selfexpression, Tonal variations, Group discussion practice, Reading, Speed reading practice, Use of extensive readers, Analytical and critical reading practice, Writing Professional Correspondence, Formal and informal letters, Tone in formal writing, Introduction to reports. Study Skills, Use of dictionary, thesaurus etc., Importance of contents page, cover \& back pages, Bibliography, Language Lab.

SEMESTER III

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MAT201	PARTIAL DIFFERENTIAL EQUATION AND COMPLEX ANALYSIS	$3-1-0$	4	4
B	CET201	MECHANICS OF SOLIDS	$3-1-0$	4	4
C	CET203	FLUID MECHANICS\& HYDRAULICS	$3-1-0$	4	4
D	CET205	SURVEYING \& GEOMATICS	$4-0-0$	4	4
E	EST200	DESIGN \& ENGINEERING	$2-0-0$	2	2
	HUT200	PROFESSIONAL ETHICS	$2-0-0$	2	2
F	MCN201	SUSTAINABLE ENGINEERING	$2-0-0$	2	--
S	CEL201	CIVIL ENGINEERING PLANNING \&DRAFTING LAB	$0-0-3$	3	2
T	CEL203	SURVEY LAB	$0-0-3$	3	2
R/M	VAC	Remedial/Minor course	$3-1-0$	$4 *$	4
		TOTAL		$\mathbf{2 6 / 3 0}$	$\mathbf{2 2 / 2 6}$

NOTE:

1. Design \& Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50\% of the number of branches in the Institution to opt for Design \& Engineering in S3 and Professional Ethics in S4 \& vice versa.
2. *All Institutions shall keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student does not opt for minor programme, he/she can be given remedial class.

SEMESTER IV

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MAT202	PROBABILITY, STATISTICS AND NUMERICAL METHODS	$3-1-0$	4	4
B	CET202	ENGINEERING GEOLOGY	$3-0-1$	4	4
C	CET204	GEOTECHNICAL ENGINEERING -I	$4-0-0$	4	4
D	CET206	TRANSPORTATION ENGINEERING	$4-0-0$	4	4
E	EST200	DESIGN \& ENGINEERING	$2-0-0$	2	2
	HUT200	PROFESSIONAL ETHICS	$2-0-0$	2	2
F	MCN202	CONSTITUTION OF INDIA	$2-0-0$	2	--
S	CEL202	MATERIAL TESTING LAB- I	$0-0-3$	3	2
T	CEL204	FLUID MECHANICS LAB	$0-0-3$	3	2
R/M/H	VAC	Remedial/Minor/Honours course	$3-1-0$	$4 *$	4
		TOTAL		$\mathbf{2 6 / 3 0}$	$\mathbf{2 2 / 2 6}$

NOTE:

1. Design \& Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design \& Engineering in S3 and Professional Ethics in S4 \& vice versa.
2. *All Institutions should keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student does not opt for minor programme, he/she can be given remedial class.

SEMESTER V

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	CET301	STRUCTURAL ANALYSIS - I	$3-1-0$	4	4
B	CET303	DESIGN OF CONCRETE STRUCTURES	$3-1-0$	4	4
C	CET305	GEOTECHNICAL ENGINEERING - II	$4-0-0$	4	4
D	CET307	HYDROLOGY \& WATER RESOURCES ENGINEERING	$4-0-0$	4	4
E	CET309	 MANAGEMENT	$3-0-0$	3	3
F	MCN301	DISASTER MANAGEMENT	$2-0-0$	2	--
S	CEL331	MATERIAL TESTING LAB - II	$0-0-3$	3	2
T	CEL333	GEOTECHNICAL ENGINEERING LAB	$0-0-3$	3	2
R/M/H	VAC	Remedial/Minor/Honours course	$\mathbf{3 - 1 - 0 ~}$	$4 *$	4
		TOTAL		$\mathbf{2 7 / 3 1}$	$\mathbf{2 3 / 2 7}$

NOTE:

1. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 3 to 5 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.

SEMESTER VI

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	CET302	STRUCTURAL ANALYSIS - II	$3-1-0$	4	4
B	CET304	ENVIRONMENTAL ENGINEERING	$4-0-0$	4	4
C	CET306	DESIGN OF HYDRAULIC STRUCTURES	$4-0-0$	4	4
D	CETXXX	PROGRAM ELECTIVE I	$3-0-0$	3	3
E	HUT300	 FOREIGN TRADE	$3-0-0$	3	3
F	CET308	COMREHENSIVE COURSE WORK	$1-0-0$	1	1
S	CEL332	TRANSPORTATION ENGINEERING LAB	$0-0-3$	3	2
T	CEL334	CIVIL ENGINEERING SOFTWARE LAB	$0-0-3$	3	2
R/M/H	VAC	Remedial/Minor/Honours course	$3-1-0$	$4 *$	4
		TOTAL		$\mathbf{2 5 / 2 9}$	$\mathbf{2 3 / 2 7}$

PROGRAM ELECTIVE I

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
D	CET312	ADVANCED COMPUTATIONAL METHODS	3-0-0	3	3
	CET322	GEOTECHNICAL INVESTIGATION	3-0-0		
	CET332	TRAFFIC ENGINEERING \& MANAGEMENT	3-0-0		
	CET342	MECHANICS OF FLUID FLOW	3-0-0		
	CET352	ADVANCED CONCRETE TECHNOLOGY	3-0-0		
	CET362	ENVIRONMENTALIMPACT ASSESSMENT	3-0-0		
	CET372	FUNCTIONAL DESIGN OF BUILDINGS	3-0-0		

NOTE:

1. **All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 2 to 4 PM and Wednesdays from 2 to 4 PM). If a student does not opt for minor/honors programme, he/she can be given remedial class.
2. Comprehensive Course Work: The comprehensive course work in the sixth semester of study shall have a written test of 50 marks. The written examination will be of objective type similar to the GATE examination and will be conducted online by the University. Syllabus for comprehensive examination shall be prepared by the respective BoS choosing any 5 core courses studied from semester 3 to 5 . The pass minimum for this course is 25 . The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum.

SEMESTER VII

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	CET401	DESIGN OF STEEL STRUCTURES	$3-0-0$	3	3
B	CETXXX	PROGRAM ELECTIVE II	$3-0-0$	3	3
C	CETXXX	OPEN ELECTIVE	$3-0-0$	3	3
D	MCN401	INDUSTRIAL SAFETY ENGINEERING	$2-1-0$	3	---
S	CEL411	ENVIRONMENTAL ENGG LAB	$0-0-3$	3	2
T	CEQ413	SEMINAR	$0-0-3$	3	2
U	CED415	PROJECT PHASE I	$0-0-6$	6	2
R/M/H	VAC	Remedial/Minor/Honours course	$3-1-0$	$\mathbf{4}^{*}$	4
		TOTAL		$\mathbf{2 4 / 2 8}$	$\mathbf{1 5 / 1 9}$

PROGRAM ELECTIVE II

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
B	CET413	PRESTRESSED CONCRETE	3-0-0	3	3
	CET423	GROUND IMPROVEMENT TECHNIQUES	3-0-0		
	CET433	HIGHWAY MATERIALS AND DESIGN	3-0-0		
	CET443	APPLIED HYDROLOGY	3-0-0		
	CET453	CONSTRUCTION PLANNING \& MANAGEMENT	3-0-0		
	CET463	ADVANCED ENVIRONMENTAL ENGINEERING	3-0-0		
	CET473	OPTIMISATION TECHNIQUES IN CIVIL ENGINEERING	3-0-0		

OPEN ELECTIVE

The open elective is offered in semester 7. Each program should specify the courses (maximum 5) they would like to offer as electives for other programs. The courses listed below are offered by the Department of CIVIL ENGINEERING for students of other undergraduate branches offered in the college.

SLOT	COURSE NO.	COURSES	L-T-P	$\begin{gathered} \text { HOUR } \\ \mathrm{S} \end{gathered}$	CREDIT
C	CET415	ENVIRONMENTAL IMPACT ASSESSMENT	2-1-0		3
	CET425	APPLIED EARTH SYSTEMS	2-1-0		
	CET435	INFORMATICS FOR INFRASTRUCTURE MANAGEMENT	2-1-0	3	
	CET445	NATURAL DISASTERS AND MITIGATION	2-1-0		
	CET455	ENVIRONMENTAL HEALTH AND SAFETY	2-1-0		
	CET465	GEOINFORMATICS	2-1-0		

NOTE:

1. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honors course (Mondays from 10 to 12 and Wednesdays from 10 to 12 Noon). If a student does not opt for minor/honours programme, he/she can be given remedial class.
2. Seminar: To encourage and motivate the students to read and collect recent and reliable information from their area of interest confined to the relevant discipline from technical publications including peer reviewed journals, conference, books, project reports etc., prepare a report based on a central theme and present it before a peer audience. Each student shall present the seminar for about 20 minutes duration on the selected topic. The report and the presentation shall be evaluated by a team of internal members comprising three senior faculty members based on style of presentation, technical content, adequacy of references, depth of knowledge and overall quality of the report.
Total marks: 100, only CIE, minimum required to pass 50
Attendance :10
Guide :20
Technical Content of the Report :30
Presentation :40
3. Project Phase I: A Project topic must be selected either from research literature or the students themselves may propose suitable topics in consultation with their guides. The object of Project Work I is to enable the student to take up investigative study in the broad field of Civil Engineering, either fully theoretical/practical or involving both theoretical and practical work to be assigned by the Department on a group of three/four students, under the guidance of a Supervisor. This is expected to provide a good initiation for the student(s) in R\&D work. The assignment to normally include:
> Survey and study of published literature on the assigned topic;
> Preparing an Action Plan for conducting the investigation, including team work;
> Working out a preliminary Approach to the Problem relating to the assigned topic;
> Block level design documentation
> Conducting preliminary Analysis/ Modelling/ Simulation/ Experiment/ Design/ Feasibility;
> Preparing a Written Report on the Study conducted for presentation to the Department;
> Final Seminar, as oral Presentation before the evaluation committee.

Total marks: 100, only CIE, minimum required to pass 50
Guide
: 30

Interim evaluation by the evaluation committee :20
Final Seminar :30
The report evaluated by the evaluation committee :20
The evaluation committee comprises HoD or a senior faculty member, Project coordinator and project supervisor.

SEMESTER VIII

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	CET402	QUANTITY SURVEYING \& VALUATION	$3-0-0$	3	3
B	CETXXX	PROGRAM ELECTIVE III	$3-0-0$	3	3
C	CETXXX	PROGRAM ELECTIVE IV	$3-0-0$	3	3
D	CETXXX	PROGRAM ELECTIVE V	$3-0-0$	3	3
E	CET404	COMPREHENSIVE VIVA VOCE	$1-0-0$	1	1
U	CED416	PROJECT PHASE II	$0-0-12$	12	4
R/M/H	VAC	Remedial/Minor/Honours course	$3-1-0$	$4 *$	4
TOTAL		$\mathbf{2 5 / 2 9}$	$\mathbf{1 7 / 2 1}$		

PROGRAM ELECTIVE III

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
B	CET414	ADVANCED STRUCTURAL DESIGN	3-0-0	3	3
	CET424	GEOENVIRONMENTAL ENGINEERING	3-0-0		
	CET434	RAILWAY AND TUNNEL ENGINEERING	3-0-0		
	CET444	IRRIGATION \& DRAINAGE ENGINEERING	3-0-0		
	CET454	CONSTRUCTION METHODS \& EQUIPMENT	3-0-0		
	CET464	AIRQUALITY MANAGEMENT	3-0-0		
	CET474	URBAN PLANNING \& ARCHITECTURE	3-0-0		

PROGRAM ELECTIVE IV

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
C	CET416	BRIDGE ENGINEERING	3-0-0	3	3
	CET426	ADVANCED FOUNDATION DESIGN	3-0-0		
	CET436	TRANSPORTATION PLANNING	3-0-0		
	CET446	INFORMATICS FOR INFRASTRUCTURE MANAGEMENT	3-0-0		
	CET456	REPAIR AND REHABILITATION OF BUILDINGS	3-0-0		
	CET466	ENVIRONMENTAL REMOTESENSING	3-0-0		
	CET476	BULDING SERVICES	3-0-0		

CIVIL ENGINEERING

PROGRAM ELECTIVE V

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
D	CET418	EARTHQUAKERESISTANT DESIGN	3-0-0	3	3
	CET428	SOIL STRUCTURE INTERACTION	3-0-0		
	CET438	AIRPORT, SEAPORT AND HARBOUR ENGINEERING	3-0-0		
	CET448	HYDROCLIMATOLOGY	3-0-0		
	CET458	SUSTAINABLE CONSTRUCTION	3-0-0		
	CET468	CLIMATE CHANGE \& SUSTAINABILITY	3-0-0		
	CET478	BUILDING INFORMATION MODELLING	3-0-0		

NOTE

1. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12). If a student does not opt for minor/honors programme, he/she can be given remedial class.
2. Comprehensive Course Viva: The comprehensive course viva in the eighth semester of study shall have a viva voce for 50 marks. The viva voce shall be conducted based on the syllabus mentioned for comprehensive course work in the sixth semester. The viva voce will be conducted by the same three member committee assigned for final project phase II evaluation towards the end of the semester. The pass minimum for this course is 25 . The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum. The mark will be treated as internal and should be uploaded along with internal marks of other courses.
3. Project Phase II: The object of Project Work II \& Dissertation is to enable the student to extend further the investigative study taken up in Project 1, either fully theoretical/practical or involving both theoretical and practical work, under the guidance of a Supervisor from the Department alone or jointly with a Supervisor drawn from R\&D laboratory/Industry. This is expected to provide a good training for the student(s) in R\&D work and technical leadership. The assignment to normally include:
> In depth study of the topic assigned in the light of the Report prepared under Phasel;
> Review and finalization of the Approach to the Problem relating to the assigned topic;
> Detailed Analysis/ Modelling/ Simulation/ Design/ Problem Solving/ Experiment as needed;
> Final development of product/process, testing, results, conclusions and future directions;
> Preparing a paper for Conference presentation/Publication in Journals, if possible;
$>$ Preparing a Dissertation in the standard format for being evaluated by the Department;
> Final Presentation before a Committee
Total marks: 150, only CIE, minimum required to pass 75
Guide $\quad: 30$

Interim evaluation, 2 times in the semester by the evaluation committee :50
Quality of the report evaluated by the above committee : 30
Final evaluation by a three member committee $: 40$
(The final evaluation committee comprises Project coordinator, expert from Industry/research Institute
and a senior faculty from a sister department. The same committee will conduct comprehensive course viva for 50 marks).

MINOR

Minor is an additional credential a student may earn if $s /$ he does 20 credits worth of additional learning in a discipline other than her/his major discipline of B.Tech. degree. The objective is to permit a student to customize their Engineering degree to suit their specific interests. Upon completion of an Engineering Minor, a student will be better equipped to perform interdisciplinary research and will be better employable. Engineering Minors allow a student to gain interdisciplinary experience and exposure to concepts and perspectives that may not be a part of their major degree programs.

The academic units offering minors in their discipline will prescribe the set of courses and/or other activities like projects necessary for earning a minor in that discipline. A specialist basket of 3-6 courses is identified for each Minor. Each basket may rest on one or more foundation courses. A basket may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. S / he accumulates credits by registering for the required courses, and if the requirements for a particular minor are met within the time limit for the course, the minor will be awarded. This will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx with Minor in yyy". The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, that minor will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.
(i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from third to eight semesters for all branches. The minor courses shall be identified by \mathbf{M} slot courses.
(ii) Registration is permitted for Minor at the beginning of third semester. Total credits required is 182 (162 + 20 credits from value added courses)
(iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum for minor, of which one course shall be a mini project based on the chosen area. They can do miniproject either in S 7 or in S8. The remaining 8 credits could be acquired by undergoing 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Minor shall be conducted along with regular classes and no extra time shall be required for conducting the courses.
(iv) There won't be any supplementary examination for the courses chosen for Minor.
(v) On completion of the program, "Bachelor of Technology in xxx with Minor in yyy" will be awarded.
(vi) The registration for minor program will commence from semester 3 and the all academic units offering minors in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3 baskets. The basket of courses may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. Reshuffling of courses between various baskets will not be allowed. In any case, they should carry out a mini project based on the chosen area in S7 or S8. Students who have registered for B.Tech Minor in CIVIL ENGINEERING Branch can opt to study the courses listed below:

S	BASKET I				BASKET II				BASKET III			
m e st er	Course No.	Course Name	$\begin{aligned} & \hline \mathrm{H} \\ & \mathrm{O} \\ & \mathrm{U} \\ & \mathrm{R} \\ & \mathrm{~S} \end{aligned}$	$\begin{array}{\|c\|} \hline \mathrm{C} \\ \mathrm{R} \\ \mathrm{E} \\ \mathrm{D} \\ \mathrm{I} \\ \mathrm{~T} \end{array}$	Course No.	Course Name	H \mathbf{O} \mathbf{U} R S	$\begin{aligned} & \mathrm{C} \\ & \mathrm{R} \\ & \mathrm{E} \\ & \mathrm{D} \\ & \mathrm{I} \\ & \mathrm{~T} \end{aligned}$	Course No.	Course Name	H O U R S	C \mathbf{R} E D I T
S3	CET281	Building construction \& structural systems	4	4	CET283	Introduction to Geotechnical Engineering	4	4	CET285	Informatics for Infrastructure Management	4	4
S4	CET282	Building drawing	4	4	CET284	Introduction to Transportation Engineering	4	4	CET286	Climate change \& hazard mitigation	4	4
S5	CET381	Structural mechanics	4	4	CET383	Eco-friendly transportation systems	4	4	CET385	Sustainability analysis \& design	4	4
S6	CET382	Estimation \& costing	4	4	CET384	Geotechnical investigation \& ground improvement techniques	4	4	CET386	Environmental health\& safety	4	4
S7	CED481	MINI PROJECT	4	4	CED481	MINI PROJECT	4	4	CED481	MINI PROJECT	4	4
S8	CED482	MINI PROJECT	4	4	CED482	MINI PROJECT	4	4	CED482	MINI PROJECT	4	4

HONOURS

Honours is an additional credential a student may earn if s/he opts for the extra 20 credits needed for this in her/his own discipline. Honours is not indicative of class. KTU is providing this option for academically extra brilliant students to acquire Honours. Honours is intended for a student to gain expertise/specialise in an area inside his/her major B.Tech discipline and to enrich knowledge in emerging/advanced areas in the branch of engineering concerned. It is particularly suited for students aiming to pursue higher studies. Upon completion of Honours, a student will be better equipped to perform research in her/his branch of engineering. On successful accumulation of credits at the end of the programme, this will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx, with Honours." The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, Honours will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.
The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. The internal evaluation, examination and grading shall be exactly as for other mandatory courses. The Honours courses shall be identified by H slot courses.
(i) The curriculum/syllabus committee/BOS shall prepare syllabus for courses to be included in the curriculum from fourth to eight semesters for all branches. The honours courses shall be identified by H slot courses.
(ii) Registration is permitted for Honours at the beginning of fourth semester. Total credits required is 182 ($162+20$ credits from value added courses).
(iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum for honours, of which one course shall be a mini project based on the chosen area. The remaining 8 credits could be acquired by undergoing 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Honours shall be conducted along with regular classes and no extra time shall be required for conducting the courses. The students should earn a grade of ' C ' or better for all courses under honours.
(iv) There won't be any supplementary examination for the courses chosen for honours.
(v) On successful accumulation of credits at the end of the programme, "Bachelor of Technology in xxx, with Honours" will be awarded if overall CGPA is greater than or equal to 8.5, earned a grade of ' C ' or better for all courses chosen for honours and without any history of ' F ' Grade.
(vi) The registration for honours program will commence from semester 4 and the all academic units offering honours in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. In any case, they should carry out a mini project based on the chosen area in S8. Students who have registered for B.Tech Honours in CIVIL ENGINEERING can opt to study the courses listed below:

S	GROUP I				GROUP II				GROUP III			
m e st er	Course No.	Course Name	$\begin{aligned} & \hline \mathbf{H} \\ & \mathbf{O} \\ & \mathbf{U} \\ & \mathbf{R} \\ & \mathbf{S} \end{aligned}$	$\begin{array}{\|c\|} \hline \mathbf{C} \\ \mathbf{R} \\ \mathbf{E} \\ \mathbf{D} \\ \mathbf{I} \\ \mathbf{T} \end{array}$	Course No.	Course Name	$\begin{array}{\|l\|} \hline \mathbf{H} \\ \mathbf{O} \\ \mathrm{U} \\ \mathrm{R} \\ \mathrm{~S} \end{array}$	$\begin{aligned} & \mathrm{C} \\ & \mathbf{R} \\ & \mathbf{E} \\ & \mathbf{D} \\ & \mathbf{I} \\ & \mathbf{T} \end{aligned}$	Course No.	Course Name	H \mathbf{O} \mathbf{U} \mathbf{R} S	C R E D I
S 4	CET292	ADVANCED MECHANICS OF SOLIDS	4	4	CET294	PAVEMENT CONSTRUCTION AND MANAGEMENT	4	4	CET296	GEOGRAPHICAL INFORMATION SYSTEMS	4	4
S 5	CET393	STRUCTURAL DYNAMICS	4	4	CET395	TRANSPORTATION SYSTEMS MANAGEMENT	4	4	CET397	GROUND WATER HYDROLOGY	4	4
S 6	CET394	FINITE ELEMENT METHODS	4	4	CET396	EARTH DAMS AND EARTH RETAINING STRUCTURES	4	4	CET398	ENVIRONMENTAL POLLUTION MODELLING	4	4
S 7	CET495	MODERN CONSTRUCTION MATERIALS	4	4	CET497	SOIL DYNAMICS AND MACHINE FOUNDATIONS	4	4	CET499	ENVIRONMENTAL POLLUTION CONTROL TECHNIQUES	4	4
S 8	CED496	MINI PROJECT	4	4	CED496	MINI PROJECT	4	4	CED496	MINI PROJECT	4	4

INDUCTION PROGRAM

There will be three weeks induction program for first semester students. It is a unique three-week immersion Foundation Programme designed especially for the fresher's which includes a wide range of activities right from workshops, lectures and seminars to sports tournaments, social work and much more. The programme is designed to mould students into well-rounded individuals, aware and sensitized to local and global conditions and foster their creativity, inculcate values and ethics, and help students to discover their passion. Foundation Programme also serves as a platform for the fresher's to interact with their batchmates and seniors and start working as a team with them. The program is structured around the following five themes:
The programme is designed keeping in mind the following objectives:

- Values and Ethics: Focus on fostering a strong sense of ethical judgment and moral fortitude.
- Creativity: Provide channels to exhibit and develop individual creativity by expressing themselves through art, craft, music, singing, media, dramatics, and other creative activities.
- Leadership, Communication and Teamwork: Develop a culture of teamwork and group communication.
- Social Awareness: Nurture a deeper understanding of the local and global world and our place in at as concerned citizens of the world.
- Physical Activities \& Sports: Engage students in sports and physical activity to ensure healthy physical and mental growth.

Computer Science and Engineering

CURRICULUM FROM SEMESTERS I TO VIII

Every course of B. Tech. Programme shall be placed in one of the nine categories as listed in table below.

Sl. No	Category	Code	Credits
1	Humanities and Social Sciences including Management courses	HMC	5
2	Basic Science courses	BSC	26
3	Engineering Science Courses	ESC	22
4	Program Core Courses	PCC	79
5	Program Elective Courses	PEC	15
6	Open Elective Courses	OEC	3
7	Project work and Seminar	PWS	10
8	Mandatory Non-credit Courses (P/F) with grade	MNC	--
9	Mandatory Student Activities (P/F)	MSA	2
	Total Mandatory Credits		$\mathbf{1 6 2}$
10	Value Added Course (Optional)	VAC	20

No semester shall have more than five lecture-based courses and two laboratory and/or drawing/seminar/project courses in the curriculum. Semester-wise credit distribution shall be as below:

Sem	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	Total
Credits	17	21	22	22	23	23	15	17	160
Activity Points	50							50	---
Credits for Activity	2								
G.Total								$\mathbf{1 6 2}$	

Basic Science Courses: Maths, Physics, Chemistry, Biology for Engineers, Life Science etc

Engineering Science Courses: Engineering Graphics, Programming in C, Basics of Electrical and Electronics Engineering, Basics of Civil and Mechanical Engineering,

Engineering Mechanics, Thermodynamics, Design Engineering, Materials Engineering, Workshops etc.

Humanities and Social Sciences including Management courses: English, Humanities, Professional Ethics, Management, Finance \& Accounting, Life Skills, Professional Communication, Economics etc

Mandatory Non-credit Courses: Environmental Science, Constitution of India/Essence of Indian Knowledge Tradition, Industrial Safety Engineering, Disaster Management etc.

Course Code and Course Number

Each course is denoted by a unique code consisting of three alphabets followed by three numerals like CSL 201. The first two letter code refers to the department offering the course. CS stands for course in Computer Science \& Engineering, course code MA refers to a course in Mathematics, course code ES refers to a course in Engineering Science etc. Third letter stands for the nature of the course as indicated in the following table.

Code	Description
T	Theory based courses (other than lecture hours, these courses can have tutorial and practical hours, e.g., L-T-P structures 3-0-0, 3-1-2, 3-0-2 etc.)
L	Laboratory based courses (where performance is evaluated primarily on the basis of practical or laboratory work with LTP structures like 0-0-3, 1-0-3, 0-1-3 etc.)
N	Non-credit courses
D	Project based courses (Major-, Mini- Projects)
Q	Seminar courses

Course Number is a three digit number and the first digit refers to the Academic year in which the course is normally offered, i.e. $1,2,3$, or 4 for the B. Tech. Programme of four year duration. Of the other two digits, the last digit identifies whether the course is offered normally in the odd (odd number), even (non-zero even number) or in both the semesters (zero). The middle number could be any digit. CSL 201 is a laboratory course offered in Computer Science and Engineering department for third semester, MAT 101 is a course in Mathematics offered in the first semester, EET 344 is a theory course in Electrical Engineering offered in the sixth semester, PHT 110 is a course in Physics offered both the first and second semesters, EST 102 is a course in Basic Engineering offered by one or many departments in the second semester. These course numbers are to be given in the curriculum and syllabi.

Departments

Each course is offered by a Department and their two-letter course prefix is given in Table 2.

Sl. No.	Department	Course Prefix	Sl. No.	Department	Course Prefix
1	Aeronautical Engg	AO	16	Information Technology	IT
2	 Instrumentation	AE	17	Instrumentation \& Control	IC
3	Automobile	AU	18	Mandatory Courses	MC
4	Biomedical Engg	BM	19	Mathematics	MA
5	Biotechnology	BT	20	Mechanical Engg	ME
6	Chemical Engg	CH	21	Mechatronics	MR
7	Chemistry	CY	22	Metallurgy	MT
8	Civil Engg	CE	23	Mechanical (Auto)	MU
9	Computer Science	CS	24	Mechanical (Prod)	MP
10	Electrical \& Electronics	EE	25	Naval \& Ship Building	SB
11	Electronics \& Biomedical	EB	26	Physics	PH
12	 Communication	EC	27	Polymer Engg	PO
13	Food Technology	FT	28	Production Engg	PE
14	Humanities	HU	29	Robotics and Automation	RA
15	Industrial Engg	IE	30	Safety \& Fire Engg	FS

SEMESTER I

SLOT	$\begin{gathered} \text { COURSE } \\ \text { NO. } \end{gathered}$	COURSES	L-T-P	HOURS	CREDIT
A	MAT 101	LINEAR ALGEBRA AND CALCULUS	3-1-0	4	4
$\begin{gathered} \mathrm{B} \\ 1 / 2 \end{gathered}$	PHT 100	ENGINEERING PHYSICS A	3-1-0	4	4
	CYT 100	ENGINEERING CHEMISTRY	3-1-0	4	4
$\begin{gathered} \mathrm{C} \\ 1 / 2 \end{gathered}$	EST 100	ENGINEERING MECHANICS	2-1-0	3	3
	EST 110	ENGINEERING GRAPHICS	2-0-2	4	3
$\begin{gathered} \mathrm{D} \\ 1 / 2 \end{gathered}$	EST 120	BASICS OF CIVIL \& M E C H A N I C A L ENGINEERING	4-0-0	4	4
	EST 130	BASICS OF ELECTRICAL \& E L E C T R O N I C S ENGINEERING	4-0-0	4	4
E	HUN 101	LIFE SKILLS	2-0-2	4	--
$\begin{gathered} \mathrm{S} \\ 1 / 2 \end{gathered}$	PHL 120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
$\begin{gathered} \mathrm{T} \\ 1 / 2 \end{gathered}$	ESL 120	CIVIL \& MECHANICAL WORKSHOP	0-0-2	2	1
	ESL 130	ELECTRIC AL \& ELECTRONICS WORKSHOP	0-0-2	2	1
		TOTAL		23/24	17

SEMESTER II

SLOT	$\begin{gathered} \text { COURSE } \\ \text { NO. } \end{gathered}$	COURSES	L-T-P	HOURS	CREDIT
A	MAT 102	VECTOR CALCULUS, DIFFERENTIAL EQUATIONS AND TRANSFORMS	3-1-0	4	4
$\begin{gathered} \mathrm{B} \\ 1 / 2 \end{gathered}$	PHT 100	ENGINEERING PHYSICS A	3-1-0	4	4
	CYT 100	ENGINEERING CHEMISTRY	3-1-0	4	4
$\begin{gathered} \mathrm{C} \\ 1 / 2 \end{gathered}$	EST 100	ENGINEERING MECHANICS	2-1-0	3	3
	EST 110	ENGINEERING GRAPHICS	2-0-2	4	3
$\begin{gathered} \mathrm{D} \\ 1 / 2 \end{gathered}$	EST 120	BASICS OF CIVIL \& M E C H A N I C A L ENGINEERING	4-0-0	4	4
	EST 130	BASICS OF ELECTRICAL \& E L E C T R O N I C S ENGINEERING	4-0-0	4	4
E	HUN 102	PROFESSIONAL COMMUNICATION	2-0-2	4	--
F	EST 102	PROGRAMMING IN C	2-1-2	5	4
$\begin{gathered} \mathrm{S} \\ 1 / 2 \end{gathered}$	PHL 120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
$\begin{gathered} \mathrm{T} \\ 1 / 2 \end{gathered}$	ESL 120	CIVIL \& MECHANICAL WORKSHOP	0-0-2	2	1
	ESL 130	ELECTRIC AL \& ELECTRONICS WORKSHOP	0-0-2	2	1
TOTAL				28/29	21

NOTE:

1. Engineering Physics A and Engineering Chemistry shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Engineering Physics A in S1 and Engineering Chemistry in S2 \& vice versa. Students opting for Engineering Physics A in a semester should attend Physics Lab in the same semester and students opting for Engineering Chemistry in one semester should attend Engineering Chemistry Lab in the same semester
2. Engineering Mechanies and Engineering Graphics shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Engineering Mechanics in S1 and Engineering Graphics in S2 \& vice versa.
3. Basics of Civil \& Mechanical Engineering and Basics of Electrical \& Electronics Engineering shall be offered in both semesters. Basics of Civil \& Mechanical Engineering contain equal weightage for Civil Engineering and Mechanical Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to branches of AEI, EI, BME, ECE, EEE, ICE, CSE, IT, RA can choose this course in S1.

Basics of Electrical \& Electronics Engineering contain equal weightage for Electrical Engineering and Electronics Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to AERO, AUTO, CE, FSE, IE, ME, MECHATRONICS, PE, METALLURGY, BT, BCE, CHEM, FT, POLY can choose this course in S1. Students having Basics of Civil \& Mechanical Engineering in one semester should attend Civil \& Mechanical Workshop in the same semester and students having Basics of Electrical \& Electronics Engineering in a semester should attend Electrical \& Electronics Workshop in the same semester.

4. LIFE SKILLS

Life skills are those competencies that provide the means for an individual to be resourceful and positive while taking on life's vicissitudes. Development of one's personality by being aware of the self, connecting with others, reflecting on the abstract and the concrete, leading and generating change, and staying rooted in time-tested values and principles is being aimed at. This course is designed to enhance the employability and maximize the potential of the students by introducing them to the principles that underlie personal and professional success, and help them acquire the skills needed to apply these principles in their lives and careers.

5. PROFESSIONAL COMMUNICATION

Objective is to develop in the under-graduate students of engineering a level of competence in English required for independent and effective communication for their professional needs. Coverage: Listening, Barriers to listening, Steps to overcome them, Purposive listening
practice, Use of technology in the professional world. Speaking, Fluency \& accuracy in speech, Positive thinking, Improving self-expression, Tonal variations, Group discussion practice, Reading, Speed reading practice, Use of extensive readers, Analytical and critical reading practice, Writing Professional Correspondence, Formal and informal letters, Tone in formal writing, Introduction to reports. Study Skills, Use of dictionary, thesaurus etc., Importance of contents page, cover \& back pages, Bibliography, Language Lab.

SEMESTER III

SLOT	$\begin{gathered} \text { COURSE } \\ \text { NO. } \end{gathered}$	COURSES	L-T-P	HOURS	CREDIT
A	MAT 203	DISCRETE MATHEMATICAL STRUCTURES	3-1-0	4	4
B	CST 201	DATA STRUCTURES	3-1-0	4	4
C	CST 203	LOGIC SYSTEM DESIGN	3-1-0	4	4
D	CST 205	O B J E CTORIENTED PROGRAMMING USING JAVA	3-1-0	4	4
	EST 200	DESIGN \& ENGINEERING	2-0-0	2	2
(1/2)	HUT 200	PROFESSIONAL ETHICS	2-0-0	2	2
F	MCN 201	SUSTAINABLE ENGINEERING	2-0-0	2	--
S	CSL 201	DATA STRUCTURES LAB	0-0-3	3	2
T	CSL 203	O B J ECT ORIENTED PROGRAMMING LAB (IN JAVA)	0-0-3	3	2
R/M	VAC	Remedial/Minor course	3-1-0	4	4
		TOTAL		26*	22/26
* Excluding Hours to be engaged for Remedial/Minor course.					

SEMESTER IV

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MAT 206	GRAPH THEORY	$3-1-0$	4	4
B	CST 202	C O M P P U T E R OR G N I S A TION AND ARCHITECTURE	$3-1-0$	4	4
C	CST 204	DATABASE MANAGEMENT SYSTEMS	$3-1-0$	4	4
D	CST 206	OPERATING SYSTEMS	$3-1-0$	4	4
E	EST 200	DESIGN \& ENGINEERING	$2-0-0$	2	2
$(1 / 2)$	HUT 200	PROFESSIONAL ETHICS	$2-0-0$	2	2
F	MCN 202	CONSTITUTION OF INDIA	$2-0-0$	2	--
S	CSL 202	DIGITAL LAB	$0-0-3$	3	2
T	CSL204	OPERATING SYSTEMS LAB	$0-0-3$	3	2
R/M/	VAC	Remedial/Minor/Honors course	$3-1-0$	4	4
H		TOTAL		$\mathbf{2 6 *}$	$\mathbf{2 2 / 2 6}$

* Excluding Hours to be engaged for Remedial/Minor/Honors course.

NOTE:

1. Design \& Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design \& Engineering in S3 and Professional Ethics in S4 \& vice versa.
2. *All Institutions should keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student does not opt for minor programme, he/she can be given remedial class.

SEMESTER V

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	CST 301	FORMAL LANGUAGES AND AUTOMATA THEORY	$3-1-0$	4	4
B	CST 303	COMPUTER NETWORKS	$3-1-0$	4	4
C	CST 305	SYSTEM SOFTWARE	$3-1-0$	4	4
D	CST 307	MICROPROCESSORS AND MICROCONTROLLERS	$3-1-0$	4	4
E	CST 309	M A N A G E M E N T SOFTWARE SYSTEMS	$3-0-0$	3	3
F	MCN 301	DISASTER MANAGEMENT	$2-0-0$	2	--
S	CSL 331	SYSTEM SOFTWARE AND MICROPROCESSORS LAB	$0-0-4$	4	2
T	CSL 333	DATABASE MANAGEMENT SYSTEMS LAB	$0-0-4$	4	2
R/M/	VAC	Remedial/Minor/Honors course*	$2-0-0$	4	4
H	TOTAL	29	$\mathbf{2 3 / 2 7}$		
* Excluding Hours to be engaged for Remedial/Minor/Honors course.					

NOTE:

1. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/ Honors course (Tuesdays from 3 to 5 PM and Wednesdays from 3 to 5 PM). If a student does not opt for minor/honors programme, he/she can be given remedial class.

SEMESTER VI

SLOT	COURS E NO.	COURSES	L-T-P	HOURS	CREDIT
A	CST 302	COMPILER DESIGN	$3-1-0$	4	4
B	CST 304	COMPUTER GRAPHICS AND IMAGE PROCESSING	$3-1-0$	4	4
C	CST 306	ALGORITHM ANA LYSIS AND DESIGN	$3-1-0$	4	4
D	CST ---	PROGRAM ELECTIVE I	$2-1-0$	3	3
E	HUT 300	INDUSTRIAL ECONOMICS \& FOREIGN TRADE	$3-0-0$	3	3
F	CST 308	COMPREHENSIVE COURSE WORK	$1-0-0$	1	1
S	CSL 332	NETWORKING LAB	$0-0-3$	3	2
T	CSD 334	MINIPROJECT	$0-0-3$	3	2
R/M/	VAC	Remedial/Minor/Honors course*	$3-1-0$	4	4
H		TOTAL		25^{*}	$\mathbf{2 3 / 2 7}$

* Excluding Hours to be engaged for Remedial/Minor/Honors course.

Note:
Electives: This curriculum envisages to offer a learner an opportunity to earn proficiency in one of the five trending areas in Computer Science, namely Machine Learning, Data Science, Security in Computing, Formal Methods in Software Engineering and Hardware Technologies. Three courses each from the above areas are included through Elective Courses in different Elective Buckets. For example, a learner who is interested in the Machine Learning area may opt to take the elective courses - Foundations of Machine Learning from Elective-I in S6, Machine Learning from Elective-II in S7 and Deep Learning from Elective-III in S8. The Department may offer Elective Courses to enable students to utilize this opportunity, depending on the availability of faculty. The courses included from these areas under various Elective Buckets are shown in the table below.

Different Specializations introduced through various Elective Buckets				
Bucke t	Specialisation	Semester		
		S6	S7	S8
1	Machine Learning	FOUNDATIONS OF M A C H I N E LEARNING (E-I)	MACHINE LEARNING (E-II)	DEEP LEARNING (E-III)
2	Data Science	DATA ANALYTICS (E-I)	C $\quad \mathrm{L}=\mathrm{O} \quad \mathrm{U}=\mathrm{D}$ COMPUTING (E-II)	BLOCK CHAIN TECHNOLOGIES (E-V)
3	Security in Computing	FOUNDATIONS OF SECURITY COMPUTING (E-I)	SECURITY IN COMPUTING (E-II)	CRYPTOGRAPHY (E-III)
4	Formal Methods in Software Engineering	A U TOMATED VERIFICATION (EI)	MODEL BASED S O F T W A R E DEVELOPMENT (E-II)	S O F T W A R E TESTING (E-V)
5	Hardware Technologies	INTRODUCTION T O I A 32 ARCHITECTURE (E-I)	A D V A N C E D TOPICS IN IA32 ARCHITECTURE (E-II)	U N I F I E D EXTENDED F I R M W A R E INTERFACE (E-IV)

PROGRAM ELECTIVE I

SLOT	$\begin{array}{c\|} \text { COURSE } \\ \text { NO. } \end{array}$	COURSES	L-T-P	HOURS	CREDIT
D	CST 312	i FOUNDATIONS OF MACHINE LEARNING	2-1-0	3	3
	CST 322	ii DATA ANALYTICS	2-1-0		
	CST 332	iii FOUND ATIONS OF SECURITY IN COMPUTING	2-1-0		
	CST 342	iv A UTOMATED VERIFICATION	2-1-0		
	CST 352	v INTRODUCTION TO IA32 ARCHITECTURE	2-1-0		
	CST 362	vi PROGRAMMING IN PYTHON	2-1-0		
	CST 372	vii DATA AND COMPUTER COMMUNICATION	2-1-0		

COURSES TO BE CONSIDERED FOR COMPREHENSIVE COURSE WORK

I DISCRETE MATHEMATICAL STRUCTURES			
ii DATA STRUCTURES			
iii OPERATING SYSTEMS			
iv COMPUTER ORGANIZATION AND ARCHITECTURE			
v DATABASE MANAGEMENT SYSTEMS			
vi FORMAL LANGUAGES AND AUTOMATA THEORY			

NOTE:

1. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honors course (Tuesdays from 3 to 5 PM and Wednesdays from 2 to 4 PM). If a student does not opt for minor/honors programme, he/she can be given remedial class.
2. Comprehensive Course Work: The comprehensive course work in the sixth semester of study shall have a written test of 50 marks. The written examination will be of objective type similar to the GATE examination and will be conducted by the University. Syllabus for comprehensive examination shall be prepared by the respective BoS choosing the above listed 6 core courses studied from semesters 3 to 5. The pass minimum for this course is 25 . The course should be mapped with a faculty and classes shall be arranged for practicing questions based on the core courses listed in the curriculum.
3. Mini project: It is introduced in the sixth semester with a specific objective to strengthen the understanding of student's fundamentals through effective application of theoretical concepts. Mini project can help to boost their skills and widen the horizon of their thinking. The ultimate aim of an engineering student is to resolve a problem by applying theoretical knowledge. Doing more projects increases problemsolving skills. Student Groups with 3 or 4 members should identify a topic of interest in consultation with Faculty/Advisor. Review the literature and gather information pertaining to the chosen topic. State the objectives and develop a methodology to achieve the objectives. Carryout the design/fabrication or develop codes/programs to achieve the objectives. Demonstrate the novelty of the project through the results and outputs. The progress of the mini project is evaluated based on a minimum of two reviews. The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The product has to be
demonstrated for its full design specifications. Innovative design concepts, reliability considerations, aesthetics/ergonomic aspects taken care of in the project shall be given due weight. The internal evaluation will be made based on the product, the report and a viva-voce examination, conducted internally by a 3 member committee appointed by Head of the Department comprising HoD or a senior faculty member, Mini Project coordinator for that program and project guide.
Total marks: 150 - CIE 75 marks and ESE 75 marks
Split up for CIE
Attendance
Project Guide
15
Project Report
10
Evaluation by the Committee (will be evaluating the level of completion and demonstration of functionality/specifications, presentation, oral examination, work knowledge and involvement)

SEMESTER VII

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	CST 401	ARTIFICIAL INTELLIGENCE	$2-1-0$	3	3
B	CST ---	PROGRAM ELECTIVE II	$2-1-0$	3	3
C	CST ---	OPEN ELECTIVE	$2-1-0$	3	3
D	MCN 401	IND U STR IA L SAFE TY ENGINEERING	$2-1-0$	3	---
S	CSL 411	COMPILER LAB	$0-0-3$	3	2
T	CSQ 413	SEMINAR	$0-0-3$	3	2
U	CSD 415	PROJECT PHASE I	$0-0-6$	6	2
R/M/ H	VAC	Remedial/Minor/Honors course*	$3-1-0$	4	4
		TOTAL		$\mathbf{2 4 *}$	$\mathbf{1 5 / 1 9}$

[^0]PROGRAM ELECTIVE II

SLOT	$\begin{array}{c}\text { COURSE } \\ \text { NO. }\end{array}$	COURSES	L-T-P	HOURS	CREDIT
	CST 413	i MACHINE LEARNING	$2-1-0$		
	CST 423	ii CLOUD COMPUTING	$2-1-0$		
	CST 433	$\begin{array}{l}\text { i i i } \\ \text { COMPUTING }\end{array}$	S E C U R T Y	I N	$2-1-0$

OPEN ELECTIVE

The open elective is offered in semester 7. Each program should specify the courses (maximum 5) they would like to offer as electives for other programs. The courses listed below are offered by the Department of COMPUTER SCIENCE \& ENGINEERING for students of other undergraduate branches except Computer Science \& Engineering and Information Technology, offered in the colleges under KTU.

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	CST 415	i INTRODUCTION TO MOBILE COMPUTING	$2-1-0$		
B	CST 425	ii INTRODUCTION TO DEEP LEARNING	$2-1-0$		
	CST 435	iii COMPUTER GRAPHICS	$2-1-0$	3	3
	CST 445	iv PYTHON FOR ENGINEERS	$2-1-0$		

NOTE:

1. All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honors course (Mondays from 10 to 12 and Wednesdays from 10 to 12 Noon). If a student does not opt for minor/honors programme, he/she can be given remedial class.
2. Seminar: To encourage and motivate the students to read and collect recent and reliable information about their area of interest confined to the relevant discipline, from technical publications including peer reviewed journals, conferences, books, project reports etc., prepare a report based on a central theme and present it before a peer audience. Each student shall present the seminar for about 20 minutes duration on the selected topic. The report and the presentation shall be evaluated by a team of faculty members comprising Academic coordinator for that program, seminar coordinator and seminar guide based on style of presentation, technical content, adequacy of references, depth of knowledge and overall quality of the report.

Total marks: 100 , only CIE, minimum required to pass 50

Attendance 10

Seminar Guide 20
Technical Content of the Report 30
Presentation
40
3. Project Phase-I: A Project topic must be selected either from research literature or the students themselves may propose suitable topics in consultation with their guides. The objective of Project Work Phase-I is to enable the student to take up investigative study in the broad field of Computer Science and Engineering, either fully theoretical/ practical or involving both theoretical and practical work to be assigned by the Department on a group of three/four students, under the mentoring of a Project Guide(s). This is expected to provide a good initiation for the student(s) in R\&D work. The assignment shall normally include:
> Survey and study of published literature on the assigned topic;
> Preparing an Action Plan for conducting the investigation, including team work;
> Working out a preliminary Approach to the Problem relating to the assigned topic;
> Block level design documentation
> Conducting preliminary Analysis/ Modelling/ Simulation/ Experiment/ Design/ Feasibility;
> Preparing a Written Report on the Study conducted for presentation to the Department;
> Final project presentation before the concerned departmental committee.
Total marks: 100 , only CIE, minimum required to pass 50
Project Guide(s) 30
Interim evaluation by the evaluation committee $\int_{-2}=20$
Final project presentation $\mid=30$
Final evaluation by the evaluation committee 20

The evaluation committee comprises HoD or a senior faculty member, Project coordinator and project guide(s).

SEMESTER VIII

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT				
A	CST 402	DISTRIBUTED COMPUTING	$2-1-0$	3	3				
B	CST ---	PROGRAM ELECTIVE III	$2-1-0$	3	3				
C	CST ---	PROGRAM ELECTIVE IV	$2-1-0$	3	3				
D	CST ---	PROGRAM ELECTIVE V	$2-1-0$	3	3				
T	CST 404	COMPREHENSIVE COURSE VIVA	$1-0-0$	1	1				
U	CSD 416	PROJECT PHASE II	$0-0-12$	12	4				
R/M/	VAC	Remedial/Minor/Honors course	$3-1-0$	4	4				
H	TOTAL							$\mathbf{2 5 *}$	$\mathbf{1 7 / 2 1}$
* Excluding Hours to be engaged for Remedial/Minor/Honors course.									

PROGRAM ELECTIVE III

SLOT	$\begin{gathered} \text { COURSE } \\ \text { NO. } \end{gathered}$	COURSES	L-T-P	HOURS	CREDIT
B	CST 414	i DEEP LEARNING	2-1-0		
	CST 424	ii PROGRAMMING PARADIGMS	2-1-0		
	CST 434	iii CRYPTOGRAPHY	2-1-0		
	CST 444	iv SOFT COMPUTING	2-1-0	3	3
	CST 454	v FUZZY SET THEORY AND APPLICATIONS	2-1-0		
	CST 464	vi EMBEDDED SYSTEMS	2-1-0		
	CST 474	vii COMPUTER VISION	2-1-0		

PROGRAM ELECTIVE IV

SLOT	$\begin{array}{c}\text { COURSE } \\ \text { NO. }\end{array}$	COURSES	L-T-P	HOURS	CREDIT
C	CST 416	$\begin{array}{l}\text { i FORMAL METHODS AND } \\ \text { TO O L S I N S O F T WA R E } \\ \text { ENGINEERING }\end{array}$	$2-1-0$		

PROGRAM ELECTIVE V

SLOT	$\begin{aligned} & \text { COURSE } \\ & \text { NO. } \end{aligned}$	COURSES	L-T-P	HOURS	CREDIT
D	CST 418	i HIGH PERFORMANCE COMPUTING	2-1-0	3	3
	CST 428	ii BLOCK CHAIN TECHNOLOGIES	2-1-0		
	CST 438	iii IMAGE PROCESSING TECHNIQUE	2-1-0		
	CST 448	iv INTERNET OF THINGS	2-1-0		
	CST 458	v SOFTWARE TESTING	2-1-0		
	CST 468	vi BIOINFORMATICS	2-1-0		
	CST 478	vii COMPUTATIONAL LINGUISTICS	2-1-0		

NOTE:

1. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honors course (Mondays from 10 to 12 and Wednesdays from 10 to 12 PM). If a student does not opt for minor/honors programme, he/she can be given remedial class.
2. Comprehensive Viva Voce: The comprehensive viva voce in the eighth semester of study shall have a viva voce for 50 marks. The viva voce shall be conducted based on the core subjects studied from third to eighth semester. The viva voce will be conducted by the same three member committee assigned for final project phase II evaluation towards the end of the semesters. The pass minimum for this course is 25 . The course should be mapped with a faculty and classes shall be arranged for practicing questions based on the core courses listed in the curriculum. The mark will be treated as internal and should be uploaded along with internal marks of other courses.
3. Project Phase II: The objective of Project Work Phase II \& Dissertation is to enable the student to extend further the investigative study taken up in Project Phase I, either fully theoretical/practical or involving both theoretical and practical work, under the mentoring of a Project Guide from the Department alone or jointly with a Supervisor drawn from R\&D laboratory/Industry. This is expected to provide a good training for the student(s) in R\&D work and technical leadership. The assignment shall normally include:
> In depth study of the topic assigned in the light of the Report prepared in Phase I;
> Review and finalization of the Approach to the Problem relating to the assigned topic;
> Detailed Analysis/Modeling/Simulation/Design/Problem Solving/Experiment as needed;
> Final development of product/process, testing, results, conclusions and future directions;
> Preparing a paper for Conference presentation/Publication in Journals, if possible;
> Preparing a Dissertation in the standard format for being evaluated by the Department;
> Final Presentation before the concerned evaluation committee
Total marks: 150 , only CIE, minimum required to pass 75
Project Guide 30
Interim evaluation, twice in the semester by the evaluation committee 70
Quality of the report evaluated by the above committee 10
(The evaluation committee comprises HoD or a senior faculty member, Project coordinator and project guide).

Final evaluation by a three member committee
(The final evaluation committee comprises Project coordinator, expert from Industry/ research Institute and a senior faculty from a sister department. The same committee will conduct comprehensive course viva for 50 marks).

MINOR

Minor is an additional credential a student may earn if she/he does 20 credits worth of additional learning in a discipline other than her/his major discipline of B.Tech. degree. The objective is to permit a student to customize their Engineering degree to suit their specific interests. Upon completion of an Engineering Minor, a student will be better equipped to perform interdisciplinary research and will be better employable. Engineering Minors allow a student to gain interdisciplinary experience and exposure to concepts and perspectives that may not be a part of their major degree programs.

The academic units offering minors in their discipline will prescribe the set of courses and/or other activities like projects necessary for earning a minor in that discipline. A specialist bucket of 3-6 courses is identified for each Minor. Each bucket may rest on one or more
foundation courses. A bucket may have sequences within it, i.e., advanced courses may rest on basic courses in the bucket. She/he accumulates credits by registering for the required courses, and if the requirements for a particular minor are met within the time limit for the course, the minor will be awarded. This will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx with Minor in yyy". The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, that minor will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.
(i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from third to eight semesters for all branches. The minor courses shall be identified by M slot courses.
(ii) Registration is permitted for Minor at the beginning of third semester. Total credits required to award B.tech with Minor is $182(162+20)$
(iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses, of which one course shall be a mini project based on the chosen area. They can do miniproject either in S7 or in S8. The remaining 8 credits could be acquired through 2 MOOCs recommended by the Board of Studies and approved by the Academic Council or 2 courses from the minor buckets listed here. The classes for Minor shall be conducted along with regular classes and no extra time shall be required for conducting the courses.
(iv) There won't be any supplementary examination for the courses chosen for Minor.
(v) On completion of the program, "Bachelor of Technology in xxx with Minor in yyy" will be awarded if the registrant earn 20 credits form the minor courses.
(vi) The registration for minor program will commence from semester 3 and all the academic units offering minors in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 5 buckets. The bucket of courses may have sequences within it, i.e., advanced courses may rest on basic courses in the bucket. Reshuffling of courses between various buckets will not be allowed. There is option to skip any two courses listed here and to opt for equivalent MOOC courses approved by the Academic Council. In any case, they should carry out a mini project based on the chosen area in S7 or S8. For example: Students who have registered for B.Tech Minor in Computer Science \& Engineering can opt to study the courses listed below:

MINOR BUCKETS									
$\begin{aligned} & \mathbf{S} \\ & \mathbf{E} \\ & \mathbf{M} \\ & \mathbf{E} \\ & \mathbf{S} \\ & \mathbf{T} \\ & \mathbf{E} \\ & \mathbf{R} \end{aligned}$	BUCKET-1			BUCKET-2			BUCKET-3		
	Specialization - Software Engineering			Specialization - Machine Learning			Specialization - Networking		
	$\begin{aligned} & \text { CO } \\ & \text { UR } \\ & \text { SE } \\ & \text { NO } \end{aligned}$	COURSE NAME	 H C R O E U E R D S I T	$\begin{gathered} \text { CO } \\ \text { URS } \\ \text { E } \\ \text { NO } \end{gathered}$	$\begin{aligned} & \text { COURSE } \\ & \text { NAME } \end{aligned}$		CO URS E NO	COURSE NAME	
S3	CST 281	OBJECT ORIENTED PROGRAMMING		CST 283	PYTHON FOR MACHINE LEARNING	44	CST 285	DATA COMMUNICAT ION	44
S4	CST 282	PROGRAMMING METHODOLOGIE S		CST 284	MATHEMATIC S FOR MACHINE LEARNING	44	$\begin{aligned} & \text { CST } \\ & 286 \end{aligned}$	INTRODUCTIO N TO COMPUTER NETWORKS	4
S5	CST 381	CONCEPTS IN SOFTWARE ENGINEERING		$\begin{aligned} & \text { CST } \\ & 383 \end{aligned}$	CONCEPTS IN MACHINE LEARNING	$4 \quad 4$	CST 385	CLIENT SERVER SYSTEMS	4
S6	$\begin{aligned} & \text { CST } \\ & 382 \end{aligned}$	INTRODUCTION TO SOFTWARE TESTING		$\begin{aligned} & \text { CST } \\ & 384 \end{aligned}$	CONCEPTS IN DEEP LEARNING	44	CST 386	WIRELESS NETWORKS AND IOT APPLICATION S	44
S7	$\begin{aligned} & \text { CSD } \\ & 481 \end{aligned}$	Miniproject	4	$\begin{aligned} & \text { CSD } \\ & 481 \end{aligned}$	Miniproject	44	$\begin{aligned} & \text { CSD } \\ & 481 \end{aligned}$	Miniproject	44
S8	CSD 482	Miniproject		CSD 482	Miniproject	$4 \quad 4$	CSD 482	Miniproject	4
Note-1: Name of the specialization shall be mentioned in the Minor Degree to be awarded									
Note-2: Any B.Tech students from non-Computer Science/non-IT streams can register for the courses in the minor buckets.									

HONORS

Honors is an additional credential a student may earn if she/he opts for the extra 20 credits needed for this in her/his own discipline. Honors is not indicative of a class. The University is providing this option for academically extra brilliant students to acquire Honors. Honors is intended for a student to gain expertise/get specialized in an area inside his/her major B.Tech discipline and to enrich knowledge in emerging/advanced areas in the concerned branch of engineering. It is particularly suited for students aiming to pursue higher studies. Upon completion of Honors, a student will be better equipped to perform research in her/his branch of engineering. On successful accumulation of credits at the end of the programme, this will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx, with Honors." The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If a student is not earning credits for any one of the specified course for getting Honors, she/he is not entitled to get Honors. The individual course credits earned, however, will be reflected in the consolidated grade card.

The courses shall be grouped into maximum of 3 buckets, each bucket representing a particular specialization in the branch. The students shall select only the courses from same bucket in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. The internal evaluation, examination and grading shall be exactly as for other mandatory courses. The Honors courses shall be identified by H slot courses.
(i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from fourth to eight semesters for all branches. The Honors courses shall be identified by H slot courses.
(ii) Registration is permitted for Honors at the beginning of fourth semester. Total credits required is $182(162+20)$.
(iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses, of which one course shall be a mini project based on the chosen area. The remaining 8 credits could be acquired through 2 MOOCs recommended by the Board of studies and approved by the Academic Council or 2 courses from the same bucket as the above 3 courses. The classes for Honors shall be conducted along with regular classes and no extra time shall be required for conducting the courses. The students should earn a grade of ' C ' or better for all courses under Honors.
(iv) There won't be any supplementary examination for the courses chosen for Honors.
(v) On successful accumulation of credits at the end of the programme, "Bachelor of Technology in xxx, with Honors" will be awarded if overall CGPA is greater than
or equal to 8.5 , earned a grade of ' C ' or better for all courses chosen for Honors and there is no history of ' F ' Grade in the entire span of the BTech Course.
(vi) The registration for Honors program will commence from semester 4 and the all academic units offering Honors in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 5 buckets, each bucket representing a particular specialization in the branch. The students shall select only the courses from same bucket in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. There is option to skip any two courses listed here if required, and to opt for equivalent MOOC courses approved by the Academic Council. In any case, they should carry out a mini project based on the chosen area in S8. For example: Students who have registered for B.Tech in Computer Science and Engineering with Honors can opt to study the courses listed in one of the buckets shown below:

HONORS BUCKETS									
$\begin{aligned} & \mathbf{S} \\ & \mathbf{E} \\ & \mathbf{M} \\ & \mathbf{E} \\ & \mathbf{S} \\ & \mathbf{T} \\ & \mathbf{E} \\ & \mathbf{R} \end{aligned}$	BUCKET-1			BUCKET-2			BUCKET-3		
	Specialization - Security in Computing			Specialization - Machine Learning			Specialization - Formal Methods		
	$\begin{gathered} \text { CO } \\ \text { URS } \\ \text { E } \\ \text { NO } \end{gathered}$	COURSE NAME	 H C O R U U E R D S I T	CO URS E NO	COURSE NAME		CO UR SE NO	COURSE NAME	
S4	$\begin{aligned} & \text { CST } \\ & 292 \end{aligned}$	NUMBER THEORY	44	CST 294	$\begin{aligned} & \text { COMPUTATIO } \\ & \text { NAL } \\ & \text { FUNDAMENT } \\ & \text { ALS FOR } \\ & \text { MACHINE } \\ & \text { LEARNING } \end{aligned}$	$4 \quad 4$	CST 296	PRINCIPLES OF PROGRAM ANALYSIS AND VERIFICATION	44
S5	$\begin{aligned} & \text { CST } \\ & 393 \end{aligned}$	CRYPTOGRAPHI C ALGORITHMS		$\begin{aligned} & \text { CST } \\ & 395 \end{aligned}$	NEURAL NETWORKS AND DEEP LEARNING	4	$\begin{aligned} & \text { CST } \\ & 397 \end{aligned}$	PRINCIPLES OF MODEL CHECKING	44
S6	$\begin{aligned} & \text { CST } \\ & 394 \end{aligned}$	NETWORK SECURITY	44	$\begin{aligned} & \text { CST } \\ & 396 \end{aligned}$	ADVANCED TOPICS IN MACHINE LEARNING	4	$\begin{aligned} & \text { CST } \\ & 398 \end{aligned}$	THEORY OF COMPUTABILI TY AND COMPLEXITY	44
S7	$\begin{aligned} & \text { CST } \\ & 495 \end{aligned}$	CYBER FORENSICS	44	$\begin{aligned} & \text { CST } \\ & 497 \end{aligned}$	ADVANCED TOPICS IN ARTIFICIAL INTELLIGENC E	$4 \quad 4$	$\begin{aligned} & \text { CST } \\ & 499 \end{aligned}$	LOGIC FOR COMPUTER SCIENCE	44
S8	CSD 496	Miniproject		CSD 496	Miniproject	44	CSD 496	Miniproject	4
Note: Name of the specialization shall be mentioned in the Honors Degree to be awarded									

INDUCTION PROGRAM

There will be three weeks induction program for first semester students. It is a unique threeweek immersion Foundation Programme designed specifically for the fresher's which includes a wide range of activities right from workshops, lectures and seminars to sports tournaments, social works and much more. The programme is designed to mould students into well-rounded individuals, aware and sensitized to local and global conditions and foster their creativity, inculcate values and ethics, and help students to discover their passion. Foundation Programme also serves as a platform for the fresher's to interact with their batchmates and seniors and start working as a team with them. The program is structured around the following five themes:

The programme is designed keeping in mind the following objectives:

- Values and Ethics: Focus on fostering a strong sense of ethical judgment and moral fortitude.
- Creativity: Provide channels to exhibit and develop individual creativity by expressing themselves through art, craft, music, singing, media, dramatics, and other creative activities.
- Leadership, Communication and Teamwork: Develop a culture of teamwork and group communication.
- Social Awareness: Nurture a deeper understanding of the local and global world and our place in at as concerned citizens of the world.
- Physical Activities \& Sports: Engage students in sports and physical activity to ensure healthy physical and mental growth.

ELECTRONICS \& COMMUNICATION ENGINEERING

CURRICULUM I TO VIII: B.Tech ELECTRONICS \& COMMUNICATION ENGINEERING

Every course of B. Tech. Program shall be placed in one of the nine categories as listed in table below.

SI. No	Category	Code	Credits
1	Humanities and Social Sciences including Management courses	HMC	8
2	Basic Science courses	BSC	26
3	Engineering Science Courses	ESC	22
4	Program Core Courses	PCC	76
5	Program Elective Courses	PEC	15
6	Open Elective Courses	PWS	10
7	Project work and Seminar	MNC	----
8	Mandatory Non-credit Courses (P/F) with grade	MSA	2
9	Mandatory Student Activities (P/F)	VAC	20
10	Value Added Course (Optional)	162	

No semester shall have more than six lecture-based courses and two laboratory and/or drawing/seminar/project courses in the curriculum.
Semester-wise credit distribution shall be as below:

Semester	1	2	3	4	5	6	7	8	Total
Credits	17	21	22	22	23	23	15	17	160
Activity Points	50				50				---
Credits for Activity	2								2
Grand.Total									162

Basic Science Courses: Maths, Physics, Chemistry, Biology for Engineers, Life Science etc
Engineering science courses: Basic Electrical, Engineering Graphics, Programming, Workshop, Basic Electronics, Basic Civil, Engineering Mechanics, Mechanical Engineering, Thermodynamics, Design Engineering, Materials Engineering etc.

Humanities and Social Sciences including Management courses: English, Humanities, Professional Ethics, Management, Finance \& Accounting, Life skills, Professional Communication, Economics etc

Mandatory non-credit courses: Sustainable Engineering, Constitution of India/Essence of Indian Knowledge Tradition, Industrial Safety Engineering, disaster management etc.

Course Code and Course Number

Each course is denoted by a unique code consisting of three alphabets followed by three numerals like ECL 20 1. The first two letter code refers to the department offering the course. EC stands for course in Electronics \& Communication, course code MA refers to a course in Mathematics, course code ES refers to a course in Engineering Science etc. Third letter stands for the nature of the course as indicated in the following table.

Code	Description
T	Theory based courses (other the lecture hours, these courses can have tutorial and practical hours, e.g., L-T-P structures 3-0-0, 3-1-2, 3-0-2 etc.)
L	Laboratory based courses (where performance is evaluated primarily on the basis of practical or laboratory work with LTP structures like 0-0-3, 1-0-3, 0-1-3 etc.)
N	Non-credit courses
D	Project based courses (Major, Mini Projects)
Q	Seminar Courses

Course Number is a three digit number and the first digit refers to the Academic year in which the course is normally offered, i.e. $1,2,3$, or 4 for the B. Tech. Programme of four year duration. Of the other two digits, the last digit identifies whether the course is offered normally in the odd (odd number), even (even number) or in both the semesters (zero). The middle number could be any digit. ECL 201 is a laboratory course offered in EC department for third semester, MAT 101 is a course in Mathematics offered in the first semester, EET 344 is a course in Electrical Engineering offered in the sixth semester, PHT 110 is a course in Physics offered both the first and second semesters, EST 102 is a course in Basic Engineering offered by one or many departments. These course numbers are to be given in the curriculum and syllabi.

Departments

Each course is offered by a Department and their two-letter course prefix is given in Table 2. Table 2: Departments and their codes

SI.No	Department	Course Prefix	SI.No	Department	Course Prefix
01	Aeronautical Engg	AO	16	Information Technology	IT
02	Applied Electronics \& Instrumentation	AE	17	Instrumentation \& Control	IC
03	Automobile	AU	18	Mandatory Courses	MC
04	Biomedical Engg	BM	19	Mathematics	MA
05	Biotechnology	BT	20	Mechanical Engg	ME
06	Chemical Engg	CH	21	Mechatronics	MR
07	Chemistry	CY	22	Metallurgy	MT
08	Civil Engg	CE	23	Mechanical (Auto)	MU
09	Computer Science	CS	24	Mechanical(Prod)	MP
10	Electrical \& Electronics	EE	25	Naval \& Ship Building	SB
11	Electronics \& Biomedical	EB	26	Physics	PH
12	Electronics \& Communication	EC	27	Polymer Engg	PO
13	Food Technology	FT	28	Production Engg	PE
14	Humanities	HU	29	Robotics and Automation	RA
15	Industrial Engg	IE	30	Safety \& Fire Engg	FS

SEMESTER I

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MAT 101	LINEAR ALGEBRA AND CALCULUS	3-1-0	4	4
$\begin{gathered} \hline \mathrm{B} \\ 1 / 2 \end{gathered}$	PHT 100	ENGINEERING PHYSICS A	3-1-0		4
	CYT 100	ENGINEERING CHEMISTRY	3-1-0	4	4
$\begin{gathered} \hline \text { C } \\ 1 / 2 \end{gathered}$	EST 100	ENGINEERING MECHANICS	2-1-0	3	3
	EST 110	ENGINEERING GRAPHICS	2-0-2	4	3
$\begin{gathered} \hline \mathrm{D} \\ 1 / 2 \end{gathered}$	EST 120	BASICS OF CIVIL \& MECHANICAL ENGINEERING	4-0-0	4	4
	EST 130	BASICS OF ELECTRICAL \& ELECTRONICS ENGINEERING	4-0-0	4	4
E	HUN 101	LIFE SKILLS	2-0-2	4	--
$\begin{gathered} \hline \mathrm{S} \\ 1 / 2 \end{gathered}$	PHL 120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
$\begin{gathered} \hline \mathrm{T} \\ 1 / 2 \end{gathered}$	ESL 120	CIVIL \& MECHANICAL WORKSHOP	0-0-2	2	1
	ESL 130	ELECTRICAL \& ELECTRONICS WORKSHOP	0-0-2	2	1
		TOTAL		23/24 *	17

*Minimum hours per week

Note:

To make up for the hours lost due to induction program, one extra hour may be allotted to each course

SEMESTER II

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MAT 102	VECTOR CALCULUS, DIFFERENTIAL EQUATIONS AND TRANSFORMS	3-1-0	4	4
$\begin{gathered} \hline \mathrm{B} \\ 1 / 2 \end{gathered}$	PHT 100	ENGINEERING PHYSICS A	3-1-0		4
	CYT 100	ENGINEERING CHEMISTRY	3-1-0	4	4
$\begin{gathered} \hline \text { C } \\ 1 / 2 \end{gathered}$	EST 100	ENGINEERING MECHANICS	2-1-0	3	3
	EST 110	ENGINEERING GRAPHICS	2-0-2	4	3
$\begin{gathered} \mathrm{D} \\ 1 / 2 \end{gathered}$	EST 120	BASICS OF CIVIL \& MECHANICAL ENGINEERING	4-0-0	4	4
	EST 130	BASICS OF ELECTRICAL \& ELECTRONICS ENGINEERING	4-0-0	4	4
E	HUN 102	PROFESSIONAL COMMUNICATION	2-0-2	4	--
F	EST 102	PROGRAMMING IN C	2-1-2	5	4
$\begin{gathered} \mathrm{S} \\ 1 / 2 \end{gathered}$	PHL 120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
$\begin{gathered} \mathrm{T} \\ 1 / 2 \end{gathered}$	ESL 120	CIVIL \& MECHANICAL WORKSHOP	0-0-2	2	1
	ESL 130	ELECTRICAL \& ELECTRONICS WORKSHOP	0-0-2	2	1
TOTAL				28/29	21

NOTE:

1. Engineering Physics A and Engineering Chemistry shall be offered in both semesters. Institutions can advise students belonging to about 50\% of the number of branches in the Institution to opt for Engineering Physics A in SI and Engineering Chemistry in S2 \& vice versa. Students opting for Engineering Physics A in a semester should attend Physics Lab in the same semester and students opting for Engineering Chemistry in one semester should attend Engineering Chemistry Lab in the same semester.
2. Engineering Mechanics and Engineering Graphics shall be offered in both semesters. Institutions can advise students belonging to about 50\% of the number of branches in the Institution to opt for Engineering Mechanics in SI and Engineering Graphics in S2 \& vice versa.
3. Basics of Civil \& Mechanical Engineering and Basics of Electrical \& Electronics Engineering shall be offered in both semesters. Basics of Civil \& Mechanical Engineering contain equal weightage for

Civil Engineering and Mechanical Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to branches of AEI, EI, BME, ECE, EEE, ICE, CSE, IT, RA can choose this course in S1.
Basics of Electrical \& Electronics Engineering contain equal weightage for Electrical Engineering and Electronics Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to AERO, AUTO, CE, FSE, IE, ME, MECHATRONICS, PE, METTULURGY, BT, BCE, CHEM, FT, POLY can choose this course in S1. Students having Basics of Civil \& Mechanical Engineering in one semester should attend Civil \& Mechanical Workshop in the same semester and students having Basics of Electrical \& Electronics Engineering in a semester should attend Electrical \& Electronics Workshop in the same semester.

4. LIFE SKILLS

Life skills are those competencies that provide the means for an individual to be resourceful and positive while taking on life's vicissitudes. Development of one's personality by being aware of the self, connecting with others, reflecting on the abstract and the concrete, leading and generating change, and staying rooted in time-tested values and principles is being aimed at. This course is designed to enhance the employability and maximize the potential of the students by introducing them to the principles that underlie personal and professional success, and help them acquire the skills needed to apply these principles in their lives and careers.
5. PROFESSIONAL COMMUNICATION

Objective is to develop in the under-graduate students of engineering a level of competence in English required for independent and effective communication for their professional needs. Coverage: Listening, Barriers to listening, Steps to overcome them, Purposive listening practice, Use of technology in the professional world. Speaking, Fluency \& accuracy in speech, Positive thinking, Improving self-expression, Tonal variations, Group discussion practice, Reading, Speed reading practice, Use of extensive readers, Analytical and critical reading practice, Writing Professional Correspondence, Formal and informal letters, Tone in formal writing, Introduction to reports. Study Skills, Use of dictionary, thesaurus etc., Importance of contents page, cover \& back pages, Bibliography, Language Lab.

Semester III

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MAT201	PARTIAL DIFFERENTIAL EQUATION AND COMPLEX ANALYSIS	$3-1-0$	4	4
B	ECT 201	SOLID STATE DEVICES	$3-1-0$	4	4
C	ECT 203	LOGIC CIRCUIT DESIGN	$3-1-0$	4	4
D	ECT 205	NETWORK THEORY	$3-1-0$	4	4
E	EST200	DESIGN AND ENGINEERING	$2-0-0$	2	2
1/2	HUT200	PROFESSIONAL ETHICS	$2-0-0$	2	2
F	MCN201	SUSTAINABLE ENGINEERING	$2-0-0$	2	--
S	ECL 201	SCIENTIFIC COMPUTING LAB	$0-0-3$	3	2
T	ECL 203	LOGIC DESIGN LAB	$0-0-3$	3	2
R/M	VAC	Remedial/Minor course	$3-1-0$	$4 * *$	4
			TOTAL		$26 / 30$

NOTE:

1. Design \& Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50\% of the number of branches in the Institution to opt for Design \& Engineering in S3 and Professional Ethics in S4 \& vice versa.
2. *All Institutions shall keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student does not opt for minor programme, he/she can be given remedial class.

Semester IV

SLOT	$\begin{gathered} \text { COURSE } \\ \text { NO. } \end{gathered}$	COURSES	L-T-P	HOURS	CREDIT
A	MAT 204	PROBABILITY, RANDOM PROCESS AND NUMERICAL METHODS	3-1-0	4	4
B	ECT 202	ANALOG CIRCUITS	3-1-0	4	4
C	ECT 204	SIGNALS AND SYSTEMS	3-1-0	4	
D	ECT 206	COMPUTER ARCHITECTURE AND MICROCONTROLLERS	3-1-0	4	4
$\begin{gathered} \mathrm{E} \\ 1 / 2 \end{gathered}$	EST200	DESIGN AND ENGINEERING	2-0-0	2	2
	HUT200	PROFESSIONAL ETHICS	2-0-0	2	2
F	MCN202	CONSTITUTION OF INDIA	2-0-0	2	--
S	ECL 202	ANALOG CIRCUITS AND SIMULATION LAB	0-0-3	3	2
T	ECL 204	MICROCONTROLLER LAB	0-0-3	3	2
R/M/H	VAC	Remedial/Minor/Honours course	3-1-0	4**	4
		TOTAL		26/30	22/26

NOTE:

1. Design \& Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50\% of the number of branches in the Institution to opt for Design \& Engineering in S3 and Professional Ethics in S4 \& vice versa.
2. *All Institutions should keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student does not opt for minor programme, he/she can be given remedial class.

Semester V

SLOT	$\begin{gathered} \hline \text { COURSE } \\ \text { NO. } \end{gathered}$	COURSES	L-T-P	HOURS	CREDIT
A	ECT 301	LINEAR INTEGRATED CIRCUITS	3-1-0	4	4
B	ECT 303	DIGITAL SIGNAL PROCESSING	3-1-0	4	4
c	ECT 305	ANALOG AND DIGITAL COMMUNICATION	3-1-0	4	
D	ECT 307	CONTROL SYSTEMS	3-1-0	4	4
$1 / 2$	HUT300	INDUSTRIAL ECONOMICS AND FOREIGN TRADE	3-0-0	3	3
	HUT310	MANAGEMENT FOR ENGINEERS	3-0-0	3	3
F	MCN301	DISASTER MANAGEMENT	2-0-0	2	--
S	ECL 331	ANALOG INTEGRATED CIRCUITS AND SIMULATION LAB	0-0-3	3	2
T	ECL 333	DIGITAL SIGNAL PROCESSING LAB	0-0-3	3	2
R/M/H	VAC	Remedial/Minor/Honours course	3-1-0	4**	4
		TOTAL		27/31	23/27

NOTE:

1. Industrial Economics \& Foreign Trade and Management for Engineers shall be offered in both S5 and S6. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Industrial Economics \& Foreign Trade in S5 and Management for Engineers in S6 and vice versa.
2. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 3 to 5 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.

Semester VI

SLOT	$\begin{array}{c\|} \hline \text { COURSE } \\ \text { NO. } \end{array}$	COURSES	L-T-P	HOURS	CREDIT
A	ECT 302	ELECTROMAGNETICS	3-1-0	4	4
B	ECT 304	VLSI CIRCUIT DESIGN	$3-1-0$	4	4
C	ECT 306	INFORMATION THEORY AND CODING	3-1-0	4	4
D	ECTXXX	PROGRAM ELECTIVE I	2-1-0	3	3
$\begin{aligned} & \hline \mathrm{E} \\ & 1 / 2 \end{aligned}$	HUT300	INDUSTRIAL ECONOMICS AND FOREIGN TRADE	3-0-0	3	3
	HUT310	MANAGEMENT FOR ENGINEERS	3-0-0	3	3
F	ECT 308	COMPREHENSIVE COURSE WORK	1-0-0	1	1
S	ECL 332	COMMUNICATION LAB	0-0-3	3	2
T	ECD 334	MINIPROJECT	0-0-3	3	2
R/M/H	VAC	Remedial/Minor/Honours course	3-1-0	4**	4
		TOTAL		25/29	23/27

PROGRAM ELECTIVE I

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
D	ECT 312	Digital System Design	2-1-0	3	3
	ECT 322	Power Electronics	2-1-0		
	ECT 332	Data Analysis	2-1-0		
	ECT 342	Embedded Systems	2-1-0		
	ECT 352	Digital Image Processing	2-1-0		
	ECT 362	Introduction to MEMS	2-1-0		
	ECT 372	Quantum Computing	2-1-0		

NOTE:

1. Industrial Economics \& Foreign Trade and Management for Engineers shall be offered in both S5 and S 6 . Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Industrial Economics \& Foreign Trade in S 5 and Management for Engineers in S6 and vice versa.

ELECTRONICS \& COMMUNICATION ENGINEERING

2. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 2 to 4 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.
3. Comprehensive Course Work: The comprehensive course work in the sixth semester of study shall have a written test of 50 marks. The written examination will be of objective type similar to the GATE examination and will be conducted by the University. Syllabus for comprehensive examination shall be prepared by the respective BoS choosing any 5 core courses studied from semester 3 to 5 . The pass minimum for this course is 25 . The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum.
4. Mini project: It is introduced in sixth semester with a specific objective to strengthen the understanding of student's fundamentals through application of theoretical concepts. Mini project can help to boost their skills and widen the horizon of their thinking. The ultimate aim of an engineering student is to resolve a problem by applying theoretical knowledge. Doing more projects increases problem-solving skills. Students should identify a topic of interest in consultation with Faculty/Advisor. Review the literature and gather information pertaining to the chosen topic. State the objectives and develop a methodology to achieve the objectives. Carryout the design/fabrication or develop codes/programs to achieve the objectives. Demonstrate the novelty of the project through the results and outputs. The progress of the mini project is evaluated based on a minimum of two reviews. The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The product has to be demonstrated for its full design specifications. Innovative design concepts, reliability considerations, aesthetics/ergonomic aspects taken care of in the project shall be given due weight. The internal evaluation will be made based on the product, the report and a viva- voce examination, conducted by a 3 member committee appointed by Head of the Department comprising HoD or a senior faculty member, Academic coordinator for that program, project guide/coordinator.
Total marks: 150, CIE 75 marks and ESE 75 marks
Split up for CIE
Attendance $: 10$
Guide $\quad: 15$
Project Report : 10
Evaluation by the Committee (will be evaluating the level of completion and demonstration of functionality/specifications, presentation, oral examination, work knowledge and involvement) : 40

Semester VII

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	ECT 401	WIRELESS COMMUNICATION	$2-1-0$	3	3
B	ECTXXX	PROGRAM ELECTIVE II	$2-1-0$	3	3
C	ECTXXX	OPEN ELECTIVE	$2-1-0$	3	3
D	MCN401	INDUSTRIAL SAFETY ENGINEERING	$2-1-0$	3	---
S	ECL 411	ELECTROMAGNETICS LAB	$0-0-3$	3	2
T	ECQ 413	SEMINAR	$0-0-3$	3	2
U	ECD 415	PROJECT PHASE I	$0-0-6$	6	2
R/M/H	VAC	Remedial/Minor/Honors Course	$3-1-0$	$4 *$	4
TOTAL			$24 / 28$	$15 / 19$	

PROGRAM ELECTIVE II

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
B	ECT 413	Optical Fiber Communication	2-1-0	3	3
	ECT 423	Computer Networks	2-1-0		
	ECT 433	Opto-electronic Devices	2-1-0		
	ECT 443	Antenna and Wave propagration	2-1-0		
	ECT 453	Error Control Codes	2-1-0		
	ECT 463	Machine Learning	2-1-0		
	ECT 473	DSP Architectures	2-1-0		

OPEN ELECTIVE (OE)

The open elective is offered in semester 7. Each program should specify the courses (maximum 5) they would like to offer as electives for other programs. The courses listed below are offered by the Department of ELECTRONICS AND COMMUNICATION ENGINEERING for students of other undergraduate branches offered in the college under KTU.

SLOT	$\begin{aligned} & \text { COURSE } \\ & \text { NO. } \end{aligned}$	COURS	L-T-P	HOURS	CREDIT
C	ECT 415	Mechatronics	2-1-0	3	3
	ECT 425	Biomedical Instrumen	2-1-0		
	ECT 435	Electronic Hardware f	2-1-0		
	ECT 445	IoT and Applications	2-1-0		
	ECT 455	Entertainment Electron	2-1-0		

1. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12 Noon). If a student does not opt for minor/honours programme, he/she can be given remedial class.
2. Seminar: To encourage and motivate the students to read and collect recent and reliable information from their area of interest confined to the relevant discipline from technical publications including peer reviewed journals, conference, books, project reports etc., prepare a report based on a central theme and present it before a peer audience. Each student shall present the seminar for about 20 minutes duration on the selected topic. The report and the presentation shall be evaluated by a team of faculty members comprising Academic coordinator for that program, seminar coordinator and seminar guide based on style of presentation, technical content, adequacy of references, depth of knowledge and overall quality of the report.
Total marks: 100, only CIE, minimum required to pass 50
Attendance : 10
Guide :20
Technical Content of the Report : 30
Presentation :40
3. Project Phase I: A Project topic must be selected either from research literature or the students themselves may propose suitable topics in consultation with their guides. The object of Project Work I is to enable the student to take up investigative study in the broad field of Electronics and Communication Engineering, either fully theoretical/practical or involving both theoretical and practical work to be assigned by the Department on a group of three/four students, under the guidance of a Supervisor. This is expected to provide a good initiation for the student(s) in R\&D work. The assignment to normally include:
> Survey and study of published literature on the assigned topic;
> Preparing an Action Plan for conducting the investigation, including team work;

- Working out a preliminary Approach to the Problem relating to the assigned topic;
$>$ Block level design documentation
$>$ Conducting preliminary Analysis/ Modelling/ Simulation/ Experiment/ Design/ Feasibility;
> Preparing a Written Report on the Study conducted for presentation to the Department;
> Final Seminar, as oral Presentation before the evaluation committee.
Total marks: 100, only CIE, minimum required to pass 50
Guide: 30

Interim evaluation by the evaluation committee :20
Final Seminar $: 30$
The report evaluated by the evaluation committee : 20
The evaluation committee comprises HoD or a senior faculty member, Project coordinator and project supervisor.

Semester VIII

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	ECT 402	INSTRUMENTATION	$2-1-0$	3	3
B	ECTXXX	PROGRAM ELECTIVE III	$2-1-0$	3	3
C	ECTXXX	PROGRAM ELECTIVE IV	$2-1-0$	3	3
D	ECTXXX	PROGRAM ELECTIVE V	$2-1-0$	3	3
E	ECT 404	COMPREHENSIVE VIVA VOCE	$1-0-0$	1	1
U	ECD 416	PROJECT PHASE II	$0-0-$ 12	12	4
R/M/H	VAC	Remedial/Minor/Honors course	$3-1-0$	$4 *$	4

PROGRAM ELECTIVE III

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
B	ECT 414	Biomedical Engineering	2-1-0	3	3
	ECT 424	Satellite Communication	2-1-0		
	ECT 434	Secure Communication	2-1-0		
	ECT 444	Pattern Recognition	2-1-0		
	ECT 454	RF Circuit Design	2-1-0		
	ECT 464	Mixed Signal Circuit Design	2-1-0		
	ECT 474	Entrepreneurship $\square_{\text {a }}$	2-1-0		

PROGRAM ELECTIVE IV

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
C					
	ECT 416	Modern Communication Systems	$2-1-0$		
	ECT 426	Real Time Operating Systems	$2-1-0$	3	
	ECT 436	Adaptive Signal Processing	$2-1-0$		
	ECT 446	Microwave Devices and Circuits	$2-1-0$		
	ECT 456	Speech and Audio Processing	$2-1-0$		
	ECT 466	Analog CMOS Design	$2-1-0$		
	ECT 476	Robotics			

PROGRAM ELECTIVE V

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
D	ECT 418	Mechatronics	2-1-0	-3	3
	ECT 428	Optimization Techniques	2-1-0		
	ECT 438	Computer Vision	2-1-0		
	ECT 448	Low Power VLSI	2-1-0		
	ECT 458	Internet of Things	2-1-0		
	ECT 468	Renewable Energy Systems	2-1-0		
	ECT 478	Organic Electronics	2-1-0		

1. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12). If a student does not opt for minor/honours programme, he/she can be given remedial class.
2. Comprehensive Course Viva: The comprehensive course viva in the eighth semester of study shall have a viva voce for 50 marks. The viva voce shall be conducted based on the core subjects studied from third to eighth semester. The viva voce will be conducted by the same three member committee assigned for final project phase II evaluation towards the end of the semester. The pass minimum for this course is 25 . The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum. The mark will be treated as internal and should be uploaded along with internal marks of other courses.
3. Project Phase II: The object of Project Work II \& Dissertation is to enable the student to extend further the investigative study taken up in Project 1, either fully theoretical/practical or involving both theoretical and practical work, under the guidance of a Supervisor from the Department alone or jointly with a Supervisor drawn from R\&D laboratory/Industry. This is expected to provide a good training for the student(s) in R\&D work and technical leadership. The assignment to normally include:
$>$ In depth study of the topic assigned in the light of the Report prepared under Phasel;
> Review and finalization of the Approach to the Problem relating to the assigned topic;
$>$ Detailed Analysis/Modelling/Simulation/Design/Problem Solving/Experiment as needed;
> Final development of product/process, testing, results, conclusions and future directions;
> Preparing a paper for Conference presentation/Publication in Journals, if possible;
$>$ Preparing a Dissertation in the standard format for being evaluated by the Department;
> Final Presentation before a Committee

Total marks: 150, only CIE, minimum required to pass 75 Guide $\quad: 30$
Interim evaluation, 2 times in the semester by the evaluation committee :50
Quality of the report evaluated by the above committee : 30
(The evaluation committee comprises HoD or a senior faculty member, Project coordinator and project supervisor).
Final evaluation by a three member committee $: 40$
(The final evaluation committee comprises Project coordinator, expert from Industry/research Institute and a senior faculty from a sister department. The same committee will conduct comprehensive course viva for 50 marks).

MINOR

Minor is an additional credential a student may earn if $s /$ he does 20 credits worth of additional learning in a discipline other than her/his major discipline of B.Tech degree. The objective is to permit a student to customize their Engineering degree to suit their specific interests. Upon completion of an Engineering Minor, a student will be better equipped to perform interdisciplinary research and will be better employable. Engineering Minors allow a student to gain interdisciplinary experience and exposure to concepts and perspectives that may not be a part of their major degree programs.
The academic units offering minors in their discipline will prescribe the set of courses and/or other activities like projects necessary for earning a minor in that discipline. A specialist basket of 3-6 courses is identified for each Minor. Each basket may rest on one or more foundation courses. A basket may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. $S /$ he accumulates credits by registering for the required courses, and if the requirements for a particular minor are met within the time limit for the course, the minor will be awarded. This will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx with Minor in yyy". The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, that minor will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.
(i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from third to eight semesters for all branches. The minor courses shall be identified by \mathbf{M} slot courses.
(ii) Registration is permitted for Minor at the beginning of third semester. Total credits required is 182 ($162+20$ credits from value added courses)
(iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum for minor, of which one course shall be a mini project based on the chosen area. They can do miniproject either in S7 or in S8. The remaining 8 credits could be acquired by undergoing 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Minor shall be conducted along with regular classes and no extra time shall be required for conducting the courses.
(iv)There won't be any supplementary examination for the courses chosen for Minor.
(v) On completion of the program, "Bachelor of Technology in $x x x$ with Minor in yyy" will be awarded.
(vi)The registration for minor program will commence from semester 3 and the all academic units offering minors in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3 baskets. The basket of courses may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. Reshuffling of courses between various baskets will not be allowed. In any case, they should carry out a mini project based on the chosen area in S7 or S8. Students who have registered for B.Tech Minor in ELECTRONICS AND COMMUNICATION can opt to study the courses listed below:

SE	BASKET I				\square		BASKET II	+		BASKET III			
$\begin{gathered} \text { ME } \\ \text { STE } \\ R \end{gathered}$	COURS ENO.	COURSE NAME		$\begin{array}{\|c\|} \hline \mathrm{C} \\ \mathrm{R} \\ \mathrm{E} \\ \mathrm{D} \\ \mathrm{I} \\ \mathrm{~T} \end{array}$	$\begin{aligned} & \hline \mathbf{H} \\ & \mathbf{O} \\ & \mathbf{U} \\ & \mathbf{R} \\ & \mathrm{S} \end{aligned}$	COURS ENO.	COURSE NAME	$\begin{array}{\|l\|} \hline \mathbf{H} \\ \mathbf{O} \\ \mathbf{U} \\ \mathbf{R} \\ \mathbf{S} \end{array}$	C R E D I T T	COURS ENO.	COURSE NAME		C
S3	ECT281	ELECTRONIC CIRCUITS	4	4		ECT283	ANALOG COMMUNICATI ON	4	4	ECT285	INTRODUCTION TO SIGNALS AND SYSTEMS	4	4
S4	ECT282	MICROCONT ROLLERS	4	4		ECT284	DIGITAL COMMUNICATI ON	4	4	ECT286	INTRODUCTION TO DIGITAL SIGNAL PROCESSING	4	4
S5	ECT381	EMBEDDED SYSTEM DESIGN	4	4		ECT383	COMMUNICATI ON SYSTEMS	4	4	ECT385	TOPICS IN DIGITAL IMAGE PROCESSING	4	4
S6	ECT382	VLSI CIRCUITS	4	4		ECT384	DATA NETWORKS	4	4	ECT386	TOPICS IN COMPUTER VISION	4	4
S7	ECD481	MINIPROJECT	4	4		ECD481	MINIPROJECT	4	4	ECD481	MINIPROJECT	4	4
S8	ECD482	MINIPROJECT		4		ECD482	MINIPROJECT	4	4	ECD482	MINIPROJECT	4	4

HONOURS

Honours is an additional credential a student may earn if s/he opts for the extra 20 credits needed for this in her/his own discipline. Honours is not indicative of class. KTU is providing this option for academically extra brilliant students to acquire Honours. Honours is intended for a student to gain expertise/specialise in an area inside his/her major B.Tech discipline and to enrich knowledge in emerging/advanced areas in the branch of engineering concerned. It is particularly suited for students aiming to pursue higher studies. Upon completion of Honours, a student will be better equipped to perform research in her/his branch of engineering. On successful accumulation of credits at the end of the programme, this will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx, with Honours." The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, Honours will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.

The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. The internal evaluation, examination and grading shall be exactly as for other mandatory courses. The Honours courses shall be identified by H slot courses.
(i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from fourth to eight semesters for all branches. The honours courses shall be identified by H slot courses.
(ii) Registration is permitted for Honours at the beginning of fourth semester. Total credits required is 182 ($162+20$ credits from value added courses).
(iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum for honours, of which one course shall be a mini project based on the chosen area. The remaining 8 credits could be acquired by undergoing 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Honours shall be conducted along with regular classes and no extra time shall be required for conducting the courses. The students should earn a grade of ' C ' or better for all courses under honours.
(iv) There won't be any supplementary examination for the courses chosen for honours.
(v) On successful accumulation of credits at the end of the programme, "Bachelor of Technology in xxx, with Honours" will be awarded if overall CGPA is greater than or equal to 8.5 , earned a grade of ' C ' or better for all courses chosen for honours and without any history of ' F ' Grade.
(vi) The registration for Honours program will commence from semester 4 and the all academic units offering honours in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. In any case, they should carry out a mini project based on the chosen area in S8. Students who have registered for B.Tech Honours in ELECTRONICS AND COMMUNICATION ENGINEERING can opt to study the courses listed below:

	GROUP I				GROUP II				GROUP III			
$\begin{array}{\|c\|} \hline \text { SE } \\ \text { ME } \\ \text { STE } \\ \text { R } \end{array}$	COURS ENO.	COURSE NAME	$\begin{array}{\|l\|} \hline \mathbf{H} \\ \mathbf{O} \\ \mathbf{U} \\ \mathbf{R} \\ \mathbf{S} \end{array}$	$\begin{array}{\|c\|} \hline C \\ \text { R } \\ \text { E } \\ \text { D } \\ 1 \\ T \\ \hline \end{array}$	COURSE NO.	COURSE NAME	H \mathbf{O} \mathbf{U} \mathbf{R} \mathbf{R} \mathbf{S}	C R E D	COURSE NO.	COURSE NAME	\mathbf{H} \mathbf{O} \mathbf{U} R R S	C
S4	ECT292	NANOELECTRO NICS	4	4	ECT294	STOCHASTIC PROCESSES FOR COMMUNICATION	4	4	ECT296	STOCHASTIC SIGNAL PROCESSING	4	4
S5	ECT393	FPGA BASED SYSTEM DESIGN	4	4	ECT395	DETECTION AND ESTIMATION THEORY	4	4	ECT397	COMPUTATI ONAL TOOLS FOR SIGNAL PROCESSING	4	4
S6	ECT394	ELECTRONIC DESIGN AND AUTOMATION TOOLS	4	4	ECT396	MIMO AND MULTIUSER COMMUNICATION SYSTEMS	4	4	ECT398	DETECTION AND ESTIMATION THEORY	4	4
S7	ECT495	RF MEMS	4	4	ECT497	DESIGN AND ANALYSIS OF ANTENNAS	4	4	ECT499	MULTIRATE SIGNAL PROCESSING AND WAVELETS	4	4
S8	ECD496	MINIPROJECT	4	4	ECD496	MINIPROJECT	4	4	ECD496	MINIPROJECT	4	4

INDUCTION PROGRAM

There will be three weeks induction program for first semester students. It is a unique threeweek immersion Foundation Programme designed especially for the fresher's which includes a wide range of activities right from workshops, lectures and seminars to sports tournaments, social work and much more. The programme is designed to mould students into well-rounded individuals, aware and sensitized to local and global conditions and foster their creativity, inculcate values and ethics, and help students to discover their passion. Foundation Programme also serves as a platform for the fresher's to interact with their batchmates and seniors and start working as a team with them. The program is structured around the following five themes:

The programme is designed keeping in mind the following objectives:

- Values and Ethics: Focus on fostering a strong sense of ethical judgment and moral fortitude.
- Creativity: Provide channels to exhibit and develop individual creativity by expressing themselves through art, craft, music, singing, media, dramatics, and other creative activities.
- Leadership, Communication and Teamwork: Develop a culture of teamwork and group communication.
- Social Awareness: Nurture a deeper understanding of the local and global world and our place in at as concerned citizens of the world.
- Physical Activities \& Sports: Engage students in sports and physical activity to ensure healthy physical and mental growth.

ELECTRICAL \& ELECTRONICS ENGINEERING

CURRICULUM I TO VIII: ELECTRICAL \& ELECTRONICS ENGINEERING

Every course of B. Tech. Program shall be placed in one of the nine categories as listed in table below.

SI. No	Category	Code	Credits
1	Humanities and Social Sciences including Management courses	HMC	8
2	Basic Science courses	BSC	26
3	Engineering Science Courses	ESC	22
4	Program Core Courses	PCC	76
5	Program Elective Courses	PEC	15
6	Open Elective Courses	OEC	3
7	Project work and Seminar	PWS	10
8	Mandatory Non-credit Courses (P/F) with grade	MNC	-----
9	Mandatory Student Activities (P/F)	MSA	2
	Total Mandatory Credits		162
10	Value Added Course (Optional)	VAC	20

No semester shall have more than six lecture-based courses and two laboratory and/or drawing/seminar/project courses in the curriculum. Semester-wise credit distribution shall be as below:

Sem	1	2	3	4	5	6	7	8	Total
Credits	17	21	22	22	23	23	15	17	160
Activity Points	50				50				---
Credits for Activity	2								2
G.Total									162

Basic Science Courses: Maths, Physics, Chemistry, Biology for Engineers, Life Science etc
Engineering science courses: Basic Electrical, Engineering Graphics, Programming, Workshop, Basic Electronics, Basic Civil, Engineering Mechanics, Mechanical Engineering, Thermodynamics, Design Engineering, Materials Engineering etc.
Humanities and Social Sciences including Management courses: English, Humanities, Professional Ethics, Management, Finance \& Accounting, Life Skills, Professional Communication, Economics etc

Mandatory non-credit courses: Sustainable Engineering, Constitution of India/Essence of Indian Knowledge Tradition, Industrial Safety Engineering, disaster management etc.
Course Code and Course Number
Each course is denoted by a unique code consisting of three alphabets followed by three numerals like ECL201. The first two letter code refers to the department offering the course. EC stands for course in Electronics \& Communication, course code MA refers to a course in Mathematics, course code ES refers to a course in Engineering Science etc. Third letter stands for the nature of the course as indicated in the Table 1.

Table 1: Code for the courses

Code	Description
T	Theory based courses (other the lecture hours, these courses can have tutorial and practical hours, e.g., L-T-P structures 3-0-0, 3-1-2, 3-0-2 etc.)
L	Laboratory based courses (where performance is evaluated primarily on the basis of practical or laboratory work with LTP structures like 0-0-3, 1-0-3, 0-1-3 etc.)
N	Non-credit courses
D	Project based courses (Major, Mini Projects)
Q	Seminar Courses

Course Number is a three digit number and the first digit refers to the Academic year in which the course is normally offered, i.e. 1, 2, 3, or 4 for the B. Tech. Programme of four year duration. Of the other two digits, the last digit identifies whether the course is offered normally in the odd (odd number), even (even number) or in both the semesters (zero). The middle number could be any digit. ECL 201 is a laboratory course offered in EC department for third semester, MAT 101 is a course in Mathematics offered in the first semester, EET 344 is a course in Electrical Engineering offered in the sixth semester, PHT 110 is a course in Physics offered both the first and second semesters, EST 102 is a course in Basic Engineering offered by one or many departments. These course numbers are to be given in the curriculum and syllabi.

Departments

Each course is offered by a Department and their two-letter course prefix is given in Table 2.
Table 2: Departments and their codes

SI.No	Department	Course Prefix	SI.No	Department	Course Prefix
01	Aeronautical Engg	AO	16	Information Technology	IT
02	Applied Electronics \& Instrumentation	AE	17	Instrumentation \& Control	IC
03	Automobile	AU	18	Mandatory Courses	MC
04	Biomedical Engg	BM	19	Mathematics	MA
05	Biotechnology	BT	20	Mechanical Engg	ME
06	Chemical Engg	CH	21	Mechatronics	MR
07	Chemistry	CY	22	Metallurgy	MT
08	Civil Engg	CE	23	Mechanical (Auto)	MU
09	Computer Science	CS	24	Mechanical(Prod)	MP
10	Electrical \& Electronics	EE	25	Naval \& Ship Building	SB
11	Electronics \& Biomedical	EB	26	Physics	PH
12	Electronics \& Communication	EC	27	Polymer Engg	PO
13	Food Technology	FT	28	Production Engg	PE
14	Humanities	HU	29	Robotics and Automation	RA
15	Industrial Engg	IE	30	Safety \& Fire Engg	FS

SEMESTER I

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MAT 101	LINEAR ALGEBRA AND CALCULUS	3-1-0	4	4
$\begin{gathered} \mathrm{B} \\ 1 / 2 \end{gathered}$	PHT 100	ENGINEERING PHYSICSA	3-1-0	4	4
	CYT 100	ENGINEERING CHEMISTRY	3-1-0	4	4
$\begin{gathered} \text { C } \\ 1 / 2 \end{gathered}$	$\text { EST } 100$	ENGINEERING MECHANICS	2-1-0	3	3
	EST 110	ENGINEERING GRAPHICS	2-0-2	4	3
$\begin{gathered} \mathrm{D} \\ 1 / 2 \end{gathered}$	EST 120	BASICS OF CIVIL \& MECHANICAL ENGINEERING	4-0-0	4	4
	EST 130	BASICS OF ELECTRICAL \& ELECTRONICS ENGINEERING	4-0-0	4	4
E	HUN 101	LIFE SKILLS	2-0-2	4	--
$\begin{gathered} \mathrm{S} \\ 1 / 2 \end{gathered}$	PHL 120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
$\begin{gathered} \hline \mathrm{T} \\ 1 / 2 \end{gathered}$	ESL 120	CIVIL \& MECHANICAL WORKSHOP	0-0-2	2	1
	ESL 130	ELECTRICAL \& ELECTRONICS WORKSHOP	0-0-2	2	1
		TOTAL		23/24 *	17

*Minimum hours per week
Note: To make up for the hours lost due to induction program, one extra hour may be allotted to each course

SEMESTER II

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MAT 102	VECTOR CALCULUS, DIFFERENTIAL EQUATIONS AND TRANSFORMS	3-1-0	4	4
$\begin{gathered} \mathrm{B} \\ 1 / 2 \end{gathered}$	PHT 100	ENGINEERING PHYSICS A	3-1-0	4	4
	CYT 100	ENGINEERING CHEMISTRY	3-1-0	4	4
$\begin{gathered} c \\ \text { C } \\ 1 / 2 \end{gathered}$	$\text { EST } 100$	ENGINEERING MECHANICS	2-1-0	3	3
	EST 110	ENGINEERING GRAPHICS	2-0-2	4	3
$\begin{gathered} \hline D \\ 1 / 2 \end{gathered}$	EST 120	BASICS OF CIVIL \& MECHANICAL ENGINEERING	4-0-0	4	4
	EST 130	BASICS OF ELECTRICAL \& ELECTRONICS ENGINEERING	4-0-0	4	4
E	HUN 102	PROFESSIONAL COMMUNICATION	2-0-2	4	--
F	EST 102	PROGRAMMING IN C	2-1-2	5	4
$\begin{gathered} \hline \mathrm{S} \\ 1 / 2 \end{gathered}$	PHL 120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
$\begin{gathered} \hline \mathrm{T} \\ 1 / 2 \end{gathered}$	ESL 120	CIVIL \& MECHANICAL WORKSHOP	0-0-2	2	1
	ESL 130	ELECTRICAL \& ELECTRONICS WORKSHOP	0-0-2	2	1
		TOTAL		28/29	21

NOTE:

1. Engineering Physics A and Engineering Chemistry shall be offered in both semesters. Institutions can advise students belonging to about 50\% of the number of branches in the Institution to opt for Engineering Physics A in SI and Engineering Chemistry in S2 \& vice versa. Students opting for Engineering Physics A in a semester should attend Physics Lab in the same semester and students opting for Engineering Chemistry in one semester should attend Engineering Chemistry Lab in the same semester.
2. Engineering Mechanics and Engineering Graphics shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches
in the Institution to opt for Engineering Mechanics in SI and Engineering Graphics in S2 \& vice versa.
3. Basics of Civil \& Mechanical Engineering and Basics of Electrical \& Electronics Engineering shall be offered in both semesters. Basics of Civil \& Mechanical Engineering contain equal weightage for Civil Engineering and Mechanical Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to branches of AEI, EI, BME, ECE, EEE, ICE, CSE, IT, RA can choose this course in S1.
Basics of Electrical \& Electronics Engineering contain equal weightage for Electrical Engineering and Electronics Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to AERO, AUTO, CE, FSE, IE, ME, MECHATRONICS, PE, METTULURGY, BT, BCE, CHEM, FT, POLY can choose this course in S1. Students having Basics of Civil \& Mechanical Engineering in one semester should attend Civil \& Mechanical Workshop in the same semester and students having Basics of Electrical \& Electronics Engineering in a semester should attend Electrical \& Electronics Workshop in the same semester.

4. LIFE SKILLS

Life skills are those competencies that provide the means for an individual to be resourceful and positive while taking on life's vicissitudes. Development of one's personality by being aware of the self, connecting with others, reflecting on the abstract and the concrete, leading and generating change, and staying rooted in time-tested values and principles is being aimed at. This course is designed to enhance the employability and maximize the potential of the students by introducing them to the principles that underlie personal and professional success, and help them acquire the skills needed to apply these principles in their lives and careers.
5. PROFESSIONAL COMMUNICATION

Objective is to develop in the under-graduate students of engineering a level of competence in English required for independent and effective communication for their professional needs. Coverage: Listening, Barriers to listening, Steps to overcome them, Purposive listening practice, Use of technology in the professional world. Speaking, Fluency \& accuracy in speech, Positive thinking, Improving selfexpression, Tonal variations, Group discussion practice, Reading, Speed reading practice, Use of extensive readers, Analytical and critical reading practice, Writing Professional Correspondence, Formal and informal letters, Tone in formal writing, Introduction to reports. Study Skills, Use of dictionary, thesaurus etc., Importance of contents page, cover \& back pages, Bibliography, Language Lab.

SEMESTER III

SLOT	COURSE NO	COURSES	L-T-P	HOURS	CREDIT
A	MAT201	PARTIAL DIFFERENTIAL EQUATION AND COMPLEX ANALYSIS	$3-1-0$	4	4
B	EET201	CIRCUITS AND NETWORKS	$2-2-0$	4	4
C	EET203	MEASUREMENTS AND INSTRUMENTATION	$3-1-0$	4	4
D	EET205	ANALOG ELECTRONICS	$3-1-0$	4	4
E $1 / 2$	EST200	DESIGN \& ENGINEERING	$2-0-0$	2	2
	HUT200	PROFESSIONAL ETHICS	$2-0-0$	2	2
F	MCN201	SUSTAINABLE ENGINEERING	$2-0-0$	2	--
S	EEL201	CIRCUITS AND MEASUREMENTS LAB	$0-0-3$	3	2
T	EEL203	ANALOG ELECTRONICS LAB	$0-0-3$	3	2
R/M	VAC	REMEDIAL/MINOR COURSE	$3-1-0$	$4 *$	4
		TOTAL		$26 / 30$	$\mathbf{2 2 / 2 6}$

NOTE:

1. Design \& Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design \& Engineering in S3 and Professional Ethics in S4 \& vice versa.
2. *All Institutions shall keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student does not opt for minor programme, he/she can be given remedial class.

SEMESTER IV

SLOT	COURSE NO	COURSES	L-T-P	HOURS	CREDIT
A	MAT 204	PROBABILITY, RANDOM PROCESSES AND NUMERICAL METHODS	$3-1-0$	4	4
B	EET202	DC MACHINES AND TRANSFORMERS	$2-2-0$	4	4
C	EET204	ELECTROMAGNETIC THEORY	$3-1-0$	4	4
D	EET206	DIGITAL ELECTRONICS	$3-1-0$	4	4
E	EST200	DESIGN \& ENGINEERING	$2-0-0$	2	2
H	HUT200	PROFESSIONAL ETHICS	$2-0-0$	2	2
S	MCN202	EEL202	ELECTRICAL MACHINES LAB I	$2-0-0$	2
T	EEL204	DIGITAL ELECTRONICS LAB	$0-0-3$	3	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	$3-1-0$	$4 *$	4
	TOTAL	2			

NOTE:

1. Design \& Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design \& Engineering in S3 and Professional Ethics in S4 \& vice versa.
2. *All Institutions should keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student doesnot opt for minor programme, he/she can be given remedial class.

SEMESTER V

SLOT	COURSE NO	COURSES	L-T-P	HOURS	CREDIT
A	EET301	POWER SYSTEMS I	$3-1-0$	4	4
B	EET303	MICROPROCESSORS AND MICROCONTROLLERS	$3-1-0$	4	4
C	EET305	SIGNALS AND SYSTEMS	$3-1-0$	4	4
D	EET307	SYNCHRONOUS AND INDUCTION MACHINES	$3-1-0$	4	4
E	HUT300	INDUSTRIAL ECONOMICS \& FOREIGN TRADE	$3-0-0$	3	3
F	MUT310	MANAGEMENT FOR ENGINEERS	$3-0-0$	3	3
S	EEL331	DISASTER MANAGEMENT	$2-0-0$	2	--
T	EEL333	MICROPROCESSORS AND MICROCONTROLLERS LAB	ELECTRICAL MACHINES LAB II	$0-0-3-3$	3
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	$3-1-0$	4^{*}	4
	TOTAL	2			

NOTE:

1. Industrial Economics \& Foreign Trade and Management for Engineers shall be offered in both S5 and S6. Institutions can advise students belonging to about 50\% of the number of branches in the Institution to opt for Industrial Economics \& Foreign Trade in S5 and Management for Engineers in S6 and vice versa.
2. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 3 to 5 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.

SEMESTER VI

SLOT	COURSE NO	COURSES	L-T-P	HOURS	CREDIT
A	EET302	LINEAR CONTROL SYSTEMS	$2-2-0$	4	4
B	EET304	POWER SYSTEMS II	$3-1-0$	4	4
C	EET306	POWER ELECTRONICS	$3-1-0$	4	4
D	EETXXX	PROGRAM ELECTIVE I	$2-1-0$	3	3
E	HUT300	INDUSTRIAL ECONOMICS \& FOREIGN TRADE	$3-0-0$	3	3
H	EUT310	MANAGEMENT FOR ENGINEERS	$3-0-0$	3	3
S	EEL332	COMREHENSIVE COURSE WORK	$1-0-0$	1	1
T	EEL334	POWER SYSTEMS LAB	$0-0-3$	3	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	$3-1-0$	4^{*}	4
	TOTAL	$0-0-3$	3	2	

PROGRAM ELECTIVE I

SLOT	COURSE NO	COURSES	L-T-P	HOURS	CREDIT
E	EET312	BIOMEDICAL INSTRUMENTATION	$2-1-0$		
	EET322	RENEWABLE ENERGY SYSTEMS	$2-1-0$	3	3
	EET332	COMPUTER ORGANIZATION	$2-1-0$		
	EET342	HIGH VOLTAGE ENGINEERING	$2-1-0$		
	EET352	OBJECT ORIENTED PROGRAMMING	$2-1-0$		
	EET362	MATERIAL SCIENCE	$2-1-0$		
	EET372	SOFT COMPUTING	$2-1-0$		

NOTE:

1. Industrial Economics \& Foreign Trade and Management for Engineers shall be offered in both S5 and S6. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Industrial Economics \& Foreign Trade in S5 and Management for Engineers in S6 and vice versa.

ELECTRICAL \& ELECTRONICS ENGINEERING

2. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 2 to 4 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.
3. Comprehensive Course Work: The comprehensive course work in the sixth semester of study shall have a written test of 50 marks. The written examination will be of objective type similar to the GATE examination and will be conducted by the University. Syllabus for comprehensive examination shall be prepared by the respective BoS choosing any 5 core courses studied from semester $\mathbf{3}$ to 5 . The pass minimum for this course is 25 . The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum.

SEMESTER VII

SLOT	COURSE NO	COURSES	L-T-P	HOURS	CREDIT
A	EET401	ADVANCED CONTROL SYSTEMS	$2-1-0$	3	3
B	EETXXX	PROGRAM ELECTIVE II	$2-1-0$	3	3
C	EETXXX	OPEN ELECTIVE	$2-1-0$	3	3
D	MCN401	INDUSTRIAL SAFETY ENGINEERING	$2-1-0$	3	---
S	EEL411	CONTROL SYSTEMS LAB	$0-0-3$	3	2
T	EEQ413	SEMINAR	$0-0-3$	3	2
U	EED415	PROJECT PHASE I	$0-0-6$	6	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE TOTAL	$3-1-0$	4^{*}	4
			$\mathbf{2 4 / 2 8}$	$\mathbf{1 5 / 1 9}$	

PROGRAM ELECTIVE II

SLOT	COURSE NO	COURSES	L-T-P	HOURS	CREDIT
B	EET413	ELECTRIC DRIVES	$2-1-0$		
	EET423	DIGITAL CONTROL SYSTEMS	$2-1-0$	3	3
	EET433	MODERN OPERATING SYSTEMS	$2-1-0$		
	EET443	DATA STRUCTURES	$2-1-0$		
	EET453	DIGITAL SIGNAL PROCESSING	$2-1-0$		
	EET463	ILLUMINATION TECHNOLOGY	$2-1-0$		
	EET473	DIGITAL PROTECTION OF POWER SYSTEMS	$2-1-0$		

OPEN ELECTIVES

The open elective is offered in semester 7. Each program should specify the courses (maximum 5) they would like to offer as electives for other programs. For example the courses listed below are offered by the Department of ELECTRICAL \& ELECTRONICS ENGINEERING for students of other undergraduate branches offered in the college under KTU.

ELECTRICAL \& ELECTRONICS ENGINEERING

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
C	EET415	CONTROL SYSTEMS ENGINEERING	2-1-0	3	3
	EET425	INTRODUCTION TO POWER PROCESSING	2-1-0		
	EET435	RENEWABLE ENERGY SYSTEMS	2-1-0		
	EET445	ELECTRIC VEHICLES	2-1-0		
	EET455	ENERGY MANAGEMENT	2-1-0		
TE:	1	Fh-			

1. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12 Noon). If a student does not opt for minor/honours programme, he/she can be given remedial class.
2. Seminar: To encourage and motivate the students to read and collect recent and reliable information from their area of interest confined to the relevant discipline from technical publications including peer reviewed journals, conference, books, project reports etc., prepare a report based on a central theme and present it before a peer audience. Each student shall present the seminar for about 20 minutes duration on the selected topic. The report and the presentation shall be evaluated by a team of faculty members comprising Academic coordinator for that program, seminar coordinator and seminar guide based on style of presentation, technical content, adequacy of references, depth of knowledge and overall quality of the report.
Total marks: 100 , only CIE , minimum required to pass 50
Attendance :10
Guide :20
Technical Content of the Report : 30
Presentation $\quad: 40$
3. Project Phase I: A Project topic must be selected either from research literature or the students themselves may propose suitable topics in consultation with their guides. The object of Project Work I is to enable the student to take up investigative study in the broad field of Electrical \&Electronics Engineering, either fully theoretical/practical or involving both theoretical and practical work to be assigned by the Department on a group of three/four students, under the guidance of a Supervisor. This is expected to provide a good initiation for the student(s) in R\&D work. The assignment to normally include:
> Survey and study of published literature on the assigned topic;
> Preparing an Action Plan for conducting the investigation, including team work;
> Working out a preliminary Approach to the Problem relating to the assigned topic;
> Block level design documentation

ELECTRICAL \& ELECTRONICS ENGINEERING

> Conducting preliminary Analysis/ Modelling/ Simulation/ Experiment/ Design/ Feasibility;
> Preparing a Written Report on the Study conducted for presentation to the Department;
> Final Seminar, as oral Presentation before the evaluation committee.
Total marks: 100, only CIE, minimum required to pass 50

| Guide | $: 30$ |
| :--- | :--- | :--- |
| Interim evaluation by the evaluation committee | $: 20$ |
| Final Seminar | $: 30$ |
| The report evaluated by the evaluation committee | $: 20$ |
| The evaluation committee comprises HoD or a senior faculty member, Project | |
| coordinator and project supervisor. | |

SLOT	COURSE NO	COURSES	L-T-P	HOURS	CREDIT
A	EET402	ELECTRICAL SYSTEM DESIGN AND ESTIMATION	$2-1-0$	3	3
B	EETXXX	PROGRAM ELECTIVE III	$2-1-0$	3	3
C	EETXXX	PROGRAM ELECTIVE IV	$2-1-0$	3	3
D	EETXXX	PROGRAM ELECTIVE V	$2-1-0$	3	3
T	EET404	COMPREHENSIVE COURSE VIVA	$1-0-0$	1	1
U	EED416	PROJECT PHASE II	$0-0-12$	12	4
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE TOTAL	$3-1-0$	4^{*}	4
				$\mathbf{2 5 / 2 9}$	$\mathbf{1 7 / 2 1}$

PROGRAM ELECTIVE III

SLOT	COURSE NO	COURSES	L-T-P	HOURS	CREDIT
B	EET414	ROBOTICS	2-1-0	3	3
	EET424	ENERGY MANAGEMENT	2-1-0		
	EET434	SMART GRID TECHNOLOGIES	2-1-0		
	EET444	ELECTRICAL MACHINE DESIGN	2-1-0		
	EET454	SWITCHED MODE POWER CONVERTERS	2-1-0		
	EET464	COMPUTER AIDED POWER SYSTEM ANALYSIS	2-1-0		
	EET474	MACHINE LEARNING	2-1-0		

PROGRAM ELECTIVE IV

SLOT	COURSE NO	COURSES	L-T-P	HOURS	CREDIT
C	EET416	NONLINEAR SYSTEMS	$2-1-0$		
	EET426	SPECIAL ELECTRIC MACHINES	$2-1-0$	3	3
	EET436	POWER QUALITY	$2-1-0$		
	EET446	COMPUTER NETWORKS	$2-1-0$		
	EET456	DESIGN OF POWER ELECTRONIC SYSTEMS	$2-1-0$		
	EET466	HVDC \& FACTS	$2-1-0$		
	EET476	ADVANCED ELECTRONIC DESIGN	$2-1-0$		

PROGRAM ELECTIVE V

SLOT	COURSE NO	COUR	L-T-P	HOURS	CREDIT
D	EET418	ELECTRIC AND HYBRID	2-1-0	3	3
	EET428	INTERNET OF THINGS	2-1-0		
	EET438	ENERGY STORAGE SYS	2-1-0		
	EET448	ROBUST AND ADAPTI	2-1-0		
	EET458	SOLAR PV SYSTEMS	2-1-0		
	EET468	INDUSTRIAL INSTRUM \&AUTOMATION	2-1-0		
	EET478	BIG DATA ANALYTICS	2-1-0		

NOTE

1. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12). If a student does not opt for minor/honours programme, he/she can be given remedial class.
2. Comprehensive Course Viva: The comprehensive course viva in the eighth semester of study shall have a viva voce for 50 marks. The viva voce shall be conducted based on the core subjects studied from third to eighth semester. The viva voce will be conducted by the same three member committee assigned for final project phase II evaluation towards the end of the semester. The pass minimum for this course is 25 . The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum. The mark will be treated as internal and should be uploaded along with internal marks of other courses.
3. Project Phase II: The object of Project Work II \& Dissertation is to enable the student to extend further the investigative study taken up in Project 1, either fully theoretical/practical or involving both theoretical and practical work, under the guidance of a Supervisor from the Department alone or jointly with a Supervisor drawn from R\&D laboratory/Industry. This is expected to provide a good training for the student(s) in R\&D work and technical leadership. The assignment to normally include:
> In depth study of the topic assigned in the light of the Report prepared under Phasel;
> Review and finalization of the Approach to the Problem relating to the assigned topic;
> Detailed Analysis/Modelling/Simulation/Design/Problem Solving/Experiment as needed;
> Final development of product/process, testing, results, conclusions and future directions;
> Preparing a paper for Conference presentation/Publication in Journals, if possible;
> Preparing a Dissertation in the standard format for being evaluated by the Department;
> Final Presentation before a Committee
Total marks: 150, only CIE , minimum required to pass 75
Guide
Interim evaluation, 2 times in the semester by the evaluation committee :50
Quality of the report evaluated by the above committee : 30
(The evaluation committee comprises HoD or a senior faculty member, Project coordinator and project supervisor).
Final evaluation by a three-member committee :40
(The final evaluation committee comprises Project coordinator, expert from Industry/research Institute and a senior faculty from a sister department. The same committee will conduct comprehensive course viva for 50 marks).

MINOR

Minor is an additional credential a student may earn if s/he does 20 credits worth of additional learning in a discipline other than her/his major discipline of B.Tech. degree. The objective is to permit a student to customize their Engineering degree to suit their specific interests. Upon completion of an Engineering Minor, a student will be better equipped to perform interdisciplinary research and will be better employable. Engineering Minors allow a student to gain interdisciplinary experience and exposure to concepts and perspectives that may not be a part of their major degree programs.

The academic units offering minors in their discipline will prescribe the set of courses and/or other activities like projects necessary for earning a minor in that discipline. A specialist basket of 3-6 courses is identified for each Minor. Each basket may rest on one or more foundation courses. A basket may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. S/he accumulates credits by registering for the required courses, and if the requirements for a particular minor are met within the time limit for the course, the minor will be awarded. This will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx with Minor in yyy". The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, that minor will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.
(i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from third to eight semesters for all branches. The minor courses shall be identified by \mathbf{M} slot courses.
(ii) Registration is permitted for Minor at the beginning of third semester. Total credits required is 182 ($162+20$ credits from value added courses)
(iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum for minor, of which one course shall be a mini project based on the chosen area. They can do miniproject either in $\mathrm{S7}$ or in S 8 . The remaining 8 credits could be acquired by undergoing 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Minor shall be conducted along with regular classes and no extra time shall be required for conducting the courses.
(iv) There won't be any supplementary examination for the courses chosen for Minor.
(v) On completion of the program, "Bachelor of Technology in xxx with Minor in yyy" will be awarded.
(vi) The registration for minor program will commence from semester 3 and the all academic units offering minors in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3baskets. The basket of courses may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. Reshuffling of courses between various baskets will not be allowed. In any case, they should carry out a mini project based on the chosen area in S7 or S8. Students who have registered for B. Tech Minor in ELECTRICAL \& ELECTRONICS ENGINEERING can opt to study the courses listed below:

S	BASKET I				BASKET II				BASKET III			
m st er	Course No.	Course Name	\mathbf{H} \mathbf{O} \mathbf{U} R S \mathbf{S}	$\begin{array}{\|l\|} \hline \mathrm{C} \\ \mathrm{R} \\ \mathrm{E} \\ \mathrm{D} \\ \mathrm{I} \\ \mathrm{~T} \end{array}$	Course No.	Course Name	$\begin{aligned} & \hline \mathbf{H} \\ & \mathbf{O} \\ & \mathbf{U} \\ & \mathbf{R} \\ & \mathbf{S} \end{aligned}$	$\begin{gathered} \hline \mathrm{C} \\ \mathrm{R} \\ \mathrm{E} \\ \mathrm{D} \\ \mathbf{I} \\ \mathbf{T} \end{gathered}$	Course No.	Course Name	H \mathbf{O} U R S	C R E D I T
S3	EET281	ELECTRIC CIRCUITS	4	4	EET 283	INTRODUCTION TO POWER ENGINEERING	4	4	EET 285	DYNAMIC CIRCUITS AND SYSTEMS	4	4
S4	EET 282	ELECTRICAL MACHINES	4	4	EET 284	ENERGY SYSTEMS	4	4	EET 286	PRINCIPLES OF INSTRUMENTATI ON	4	4
S5	EET 381	SOLID STATE POWER CONVERSION	4	4	EET 383	SOLAR AND WINDENERGY CONVERSION SYSTEMS	4	4	EET 385	CONTROL SYSTEMS	4	4
S6	EET 382	POWER SEMICONDUCTOR DRIVES	4	4	EET 384	INSTRUMENTATION AND AUTOMATION OF POWER PLANTS	4	4	EET 386	DIGITAL CONT ROL	4	4
S7	EED 481	MINIPROJECT	4	4	EED 481	MINIPROJECT	4	4	EED 481	MINIPROJECT	4	4

S8	EED 482	MINIPROJECT	4	4	EED 482	MINIPROJECT	4	4	EED 482	MINIPROJECT	4

Notes on Minor from Electrical Engineering Department:
Students have to credit additional 5 courses (20 credits) to receive minor in Electrical and Electronics Engineering. While choosing the minor basket, at least two courses in the selected basket should have contents different from the courses in the curriculum of the parent branch. (This is necessary in the case of related branches like Electronics and Communication, Electronics and Instrumentation, Applied Electronics and Instrumentation, Electronics and Biomedical, Computer Science and Engineering etc.) In case where the student chooses a basket with only two courses different from their parent curriculum, the remaining courses have to be selected from the approved-MOOC courses. This restriction may be incorporated in the regulations/curriculum.

HONOURS

Honours is an additional credential a student may earn if she/he opts for the extra 20 credits needed for this in her/his own discipline. Honours is not indicative of class. KTU is providing this option for academically extra brilliant students to acquire Honours. Honours is intended for a student to gain expertise/specialise in an area inside his/her major B.Tech discipline and to enrich knowledge in emerging/advanced areas in the branch of engineering concerned. It is particularly suited for students aiming to pursue higher studies. Upon completion of Honours, a student will be better equipped to perform research in her/his branch of engineering. On successful accumulation of credits at the end of the programme, this will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx, with Honours." The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, Honours will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.

The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. The internal evaluation, examination and grading shall be exactly as for other mandatory courses. The Honours courses shall be identified by H slot courses.
(i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from fourth to eight semesters for all branches. The honours courses shall be identified by H slot courses.
(ii) Registration is permitted for Honours at the beginning of fourth semester. Total credits required is 182 ($162+20$ credits from value added courses).
(iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum for honours, of which one course shall be a mini project based on the chosen area. The remaining 8 credits could be acquired through 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Honours shall be conducted along with regular classes and no extra time shall be required for conducting the courses. The students should earn a grade of ' C ' or better for all courses under honours.
(iv) There won't be any supplementary examination for the courses chosen for honours.
(v) On successful accumulation of credits at the end of the programme, "Bachelor of Technology in xxx, with Honours" will be awarded if overall CGPA is greater than or equal to 8.5, earned a grade of ' C ' or better for all courses chosen for honours and without any history of ' F ' Grade.
(vi) The registration for honours program will commence from semester 4 and the all academic units offering honours in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. In any case, they should carry out a mini project based on the chosen area in S8. For example: Students who have registered for B.Tech Honours in ELECTRICAL \& ELECTRONICS ENGINEERING can opt to study the courses listed below:

	GROUP I				GROUP II				GROUP III			
S e m es te r	Course No	Course Name	$\begin{aligned} & \hline \mathbf{H} \\ & \mathbf{O} \\ & \mathbf{U} \\ & \mathbf{R} \\ & \mathbf{S} \end{aligned}$	$\begin{aligned} & \hline \text { C } \\ & \text { R } \\ & \text { E } \\ & \text { D } \\ & \text { I } \\ & \hline \end{aligned}$	Course No	Course Name	$\begin{aligned} & \hline \mathbf{H} \\ & \mathbf{O} \\ & \mathbf{U} \\ & \mathbf{R} \\ & \mathbf{S} \end{aligned}$	$\begin{gathered} \hline \mathrm{C} \\ \mathrm{R} \\ \mathrm{E} \\ \mathrm{D} \\ \mathrm{I} \\ \mathrm{~T} \end{gathered}$	Course No	Course Name	H \mathbf{O} \mathbf{U} R \mathbf{S}	C R E D I T
S4	EET292	NETWORK ANALYSIS AND SYNTHESIS	4	4	EET 292	NETWORK ANALYSIS AND SYNTHESIS	4	4	EET 292	NETWORK ANALYSIS AND SYNTHESIS	4	4
S5	EET393	DIGITAL SIMULATION	4	4	EET 393	DIGITAL SIMULATION	4	4	EET 393	DIGITAL SIMULATION	4	4
S6	EET394	GENERALISED MACHINE THEORY	4	4	EET 396	ANALYSIS OF POWER ELECTRONIC CIRCUITS	4	4	EET 398	OPERATION AND CONTROL OF POWER SYSTEMS	4	4
S7	EET495	OPERATION AND CONTROL OF GENERATORS	4	4	EET 497	DYNAMICS OF POWER CONVERTERS	4	4	EET 499	CONTROL AND DYNAMICS OF MICROGRIDS	4	4
S8	EED496	MINIPROJECT	4	4	EED 496	MINIPROJECT	4		EED 496	MINIPROJECT	4	4

INDUCTION PROGRAM

There will be three weeks induction program for first semester students. It is a unique three-week immersion Foundation Programme designed especially for the fresher's which includes a wide range of activities right from workshops, lectures and seminars to sports tournaments, social work and much more. The programme is designed to mould students into well-rounded individuals, aware and sensitized to local and global conditions and foster their creativity, inculcate values and ethics, and help students to discover their passion. Foundation Programme also serves as a platform for the fresher's to interact with their batchmates and seniors and start working as a team with them. The program is structured around the following five themes:
The programme is designed keeping in mind the following objectives:

- Values and Ethics: Focus on fostering a strong sense of ethical judgment and moral fortitude.
- Creativity: Provide channels to exhibit and develop individual creativity by expressing themselves through art, craft, music, singing, media, dramatics, and other creative activities.
- Leadership, Communication and Teamwork: Develop a culture of teamwork and group communication.
- Social Awareness: Nurture a deeper understanding of the local and global world and our place in at as concerned citizens of the world.
- Physical Activities \& Sports: Engage students in sports and physical activity to ensure healthy physical and mental growth.

CURRICULUM I TO VIII: B. TECH MECHANICAL ENGINEERING

Every course of B. Tech. Program shall be placed in one of the nine categories as listed in table below.

SI. No	Category	Code	Credits
1	Humanities and Social Sciences including Management courses	HMC	8
2	Basic Science courses	BSC	26
3	Engineering Science Courses	ESC	22
4	Program Core Courses	PCC	76
5	Program Elective Courses	PEC	15
6	Open Elective Courses	PWS	10
7	Project work and Seminar	MNC	-----
8	Mandatory Non-credit Courses (P/F) with grade	MSA	2
9	Mandatory Student Activities (P/F)	162	
10	Value Added Course (Optional)	VAC	20

No semester shall have more than six lecture-based courses and two laboratory and/or drawing/seminar/project courses in the curriculum. Semester-wise credit distribution shall be as below:

Basic Science Courses: Maths, Physics, Chemistry, Biology for Engineers, Life Science etc Engineering science courses: Basic Electrical, Engineering Graphics, Programming, Workshop, Basic Electronics, Basic Civil, Engineering Mechanics, Mechanical Engineering, Thermodynamics, , Design Engineering, Materials Engineering etc.
Humanities and Social Sciences including Management courses: English, Humanities, Professional Communication, Management, Finance \& Accounting, Life Skills, Professional Communication, Economics etc.
Mandatory non-credit courses: Sustainable Engineering, Constitution of India/Essence of Indian Knowledge Tradition, Industrial Safety Engineering, disaster management etc.

Course Code and Course Number

Each course is denoted by a unique code consisting of three alphabets followed by three numerals like ECL 20 1. The first two letter code refers to the department offering the course. EC stands for course in Electronics \& Communication, course code MA refers to a course in Mathematics, course code ES refers to a course in Engineering Science etc. Third letter stands for the nature of the course as indicated in the Table 1.

Table 1: Code for the courses

Code	Description
T	Theory based courses (other the lecture hours, these courses can have tutorial and practical hours, e.g., L-T-P structures 3-0-0, 3-1-2, 3-0-2 etc.)
L	Laboratory based courses (where performance is evaluated primarily on the basis of practical or laboratory work with LTP structures like 0-0-3, 1-0-3, 0-1-3 etc.)
N	Non-credit courses
D	Project based courses (Major, Mini Projects)
Q	Seminar Courses

Course Number is a three digit number and the first digit refers to the Academic year in which the course is normally offered, i.e. $1,2,3$, or 4 for the B. Tech. Programme of four year duration. Of the other two digits, the last digit identifies whether the course is offered normally in the odd (odd number), even (even number) or in both the semesters (zero). The middle number could be any digit. ECL 201 is a laboratory course offered in EC department for third semester, MAT 101 is a course in Mathematics offered in the first semester, EET 344 is a course in Electrical Engineering offered in the sixth semester, PHT 110 is a course in Physics offered both the first and second semesters, EST 102 is a course in Basic Engineering offered by one or many departments. These course numbers are to be given in the curriculum and syllabi.

Departments

Each course is offered by a Department and their two-letter course prefix is given in Table 2.
Table 2: Departments and their codes

SI.No	Department	Course Prefix	SI.No	Department	Course Prefix
01	Aeronautical Engg	AO	16	Information Technology	IT
02	 Instrumentation	AE	17	 Control	IC
03	Automobile	AU	18	Mandatory Courses	MC
04	Biomedical Engg	BM	19	Mathematics	MA
05	Biotechnology	BT	20	Mechanical Engg	ME
06	Chemical Engg	CH	21	Mechatronics	MR
07	Chemistry	CY	22	Metallurgy	MT
08	Civil Engg	CS	24	Mechanical(Prod)	MP
09	Computer Science	EE	25	Naval \& Ship Building	SB
10	Electrical \& Electronics	EB	26	Physics	PH
11	Electronics \& Biomedical	EC	27	Polymer Engg	PO
12	 Communication	FT	28	Production Engg	PE
13	Food Technology	HU	29	Robotics and Automation	RA
14	Humanities	IE	30	Safety \& Fire Engg	FS
15	Industrial Engg				

SEMESTER I

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MAT 101	LINEAR ALGEBRA AND CALCULUS	3-1-0	4	4
$\begin{gathered} \text { B } \\ 1 / 2 \end{gathered}$	PHT 110	ENGINEERING PHYSICS B	3-1-0	4	4
	CYT 100	ENGINEERING CHEMISTRY	3-1-0	4	4
$\begin{gathered} \hline \text { C } \\ 1 / 2 \end{gathered}$	EST 100	ENGINEERING MECHANICS	2-1-0	3	3
	EST 110	ENGINEERING GRAPHICS	2-0-2	4	3
$\begin{gathered} \hline \mathrm{D} \\ 1 / 2 \end{gathered}$	EST 120	BASICS OF CIVIL \& MECHANICAL ENGINEERING	4-0-0	4	4
	EST 130	BASICS OF ELECTRICAL \& ELECTRONICS ENGINEERING	4-0-0	4	4
E	HUN 101	LIFE SKILLS	2-0-2	4	--
$\begin{gathered} \mathrm{S} \\ 1 / 2 \end{gathered}$	PHL 120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
$\begin{gathered} \hline \mathrm{T} \\ 1 / 2 \end{gathered}$	ESL 120	CIVIL \& MECHANICAL WORKSHOP	0-0-2	2	1
	ESL 130	ELECTRICAL \& ELECTRONICS WORKSHOP	0-0-2	2	1
		TOTAL		23/24 *	17

*Minimum hours per week
NOTE:
To make up for the hours lost due to induction program, one extra hour may be allotted to each course

SEMESTER II

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MAT 102	VECTOR CALCULUS, DIFFERENTIAL EQUATIONS AND TRANSFORMS	$3-1-0$	4	4
B $1 / 2$	PHT 110	ENGINEERING PHYSICS B	$3-1-0$	4	4
	CYT 100	ENGINEERING CHEMISTRY	$3-1-0$	4	4
C $1 / 2$	EST 100	ENGINEERING MECHANICS	$2-1-0$	3	3
	EST 110	ENGINEERING GRAPHICS	$2-0-2$	4	3
D $1 / 2$	EST 120	BASICS OF CIVIL \& MECHANICAL ENGINEERING	$4-0-0$	4	4
	EST 130	 ELECTRONICS ENGINEERING	$4-0-0$	4	4
F	HUN 102	PROFESSIONAL COMMUNICATION	$2-0-2$	4	--
S 102 $1 / 2$	PHL 120	PROGRAMMING IN C	ENGINEERING PHYSICS LAB	$0-1-2$	5
	CYL 120	ENGINEERING CHEMISTRY LAB	$0-0-2$	2	1
T $1 / 2$	ESL 120	CIVIL \& MECHANICAL WORKSHOP	$0-0-2$	2	1
	ESL 130	ELECTRICAL \& ELECTRONICS WORKSHOP	$0-0-2$	2	1
	TOTAL	$\mathbf{2 1}$			

NOTE:

1. Engineering Physics B and Engineering Chemistry shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Engineering Physics B in SI and Engineering Chemistry in S2 \& vice versa. Students opting for Engineering Physics B in a semester should attend Physics Lab in the same semester and students opting for Engineering Chemistry in one semester should attend Engineering Chemistry Lab in the same semester.
2. Engineering Mechanics and Engineering Graphics shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Engineering Mechanics in SI and Engineering Graphics in S2 \& vice versa.
3. Basics of Civil \& Mechanical Engineering and Basics of Electrical \& Electronics Engineering shall be offered in both semesters. Basics of Civil \& Mechanical Engineering contain equal weightage for Civil Engineering and Mechanical Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to branches of AEI, EI, BME, ECE, EEE, ICE, CSE, IT, RA can choose this course in S1.
Basics of Electrical \& Electronics Engineering contain equal weightage for Electrical Engineering and Electronics Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to AERO, AUTO, CE, FSE, IE, ME, MECHATRONICS, PE, METTULURGY, BT, BCE, CHEM, FT, POLY can choose this course in S1. Students having Basics of Civil \& Mechanical Engineering in one semester should attend Civil \& Mechanical Workshop in the same semester and students having Basics of Electrical \& Electronics Engineering in a semester should attend Electrical \& Electronics Workshop in the same semester.

4. LIFE SKILLS

Life skills are those competencies that provide the means for an individual to be resourceful and positive while taking on life's vicissitudes. Development of one's personality by being aware of the self, connecting with others, reflecting on the abstract and the concrete, leading and generating change, and staying rooted in time-tested values and principles is being aimed at. This course is designed to enhance the employability and maximize the potential of the students by introducing them to the principles that underlie personal and professional success, and help them acquire the skills needed to apply these principles in their lives and careers.

5. PROFESSIONAL COMMUNICATION

Objective is to develop in the under-graduate students of engineering a level of competence in English required for independent and effective communication for their professional needs. Coverage: Listening, Barriers to listening, Steps to overcome them, Purposive listening practice, Use of technology in the professional world. Speaking, Fluency \& accuracy in speech, Positive thinking, Improving self-expression, Tonal variations, Group discussion practice, Reading, Speed reading practice, Use of extensive readers, Analytical and critical reading practice, Writing Professional Correspondence, Formal and informal letters, Tone in formal writing, Introduction to reports. Study Skills, Use of dictionary, thesaurus etc., Importance of contents page, cover \& back pages, Bibliography, Language Lab.

SEMESTER III

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MAT201	PARTIAL DIFFERENTIAL EQUATION AND COMPLEX ANALYSIS	$3-1-0$	4	4
B	MET201	MECHANICS OF SOLIDS	$3-1-0$	4	4
C	MET203	MECHANICS OF FLUIDS	$3-1-0$	4	4
D	MET205	METALLURGY \& MATERIAL SCIENCE	$3-1-0$	4	4
E	EST200	DESIGN AND ENGINEERING	$2-0-0$	2	2
1/2	HUT200	PROFESSIONAL ETHICS	$2-0-0$	2	2
F	MCN201	SUSTAINABLE ENGINEERING	$2-0-0$	2	--
S	MEL201	COMPUTER AIDED MACHINE DRAWING	$0-0-3$	3	2
T	MEL203	MATERIALS TESTING LAB	$0-0-3$	3	2
R/M	VAC	REMEDIAL/MINOR COURSE	$3-1-0$	$4 * *$	4
TOTAL	$\mathbf{2 6 / 3 0}$	$\mathbf{2 2 / 2 6}$			

NOTE:

1. Design \& Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design \& Engineering in S3 and Professional Ethics in S4 \& vice versa.
2. *All Institutions shall keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student does not opt for minor programme, he/she can be given remedial class.

SEMESTER IV

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MAT202	PROBABILITY, STATISTICS AND NUMERICAL METHODS	$3-1-0$	4	4
B	MET202	ENGINEERING THERMODYNAMICS	$3-1-0$	4	4
C	MET204	MANUFACTURING PROCESS	$3-1-0$	4	4
D	MET206	FLUID MACHINERY	$3-1-0$	4	4
E 1/2	EST200	DUT200	PROFESSIONAL ETHICS	$2-0-0$	2
F	MCN202	CONSTITUTION OF INDIA	$2-0-0$	2	2
S	MEL202	FM \& HM LAB	$2-0-0$	2	--
T	MEL204	MACHINE TOOLS LAB-I	$0-0-3$	3	2
R/M/ H	VAC	REMEDIAL/MINOR/HONORS COURSE	$3-1-0$	$4 *$	4
TOTAL	$0-0-3$	3	2		

NOTE:

1. Design \& Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design \& Engineering in S3 and Professional Ethics in S4 \& vice versa.
2. *All Institutions should keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student does not opt for minor programme, he/she can be given remedial class.

SEMESTER V

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDI T
A	MET301	MECHANICS OF MACHINERY	$3-1-0$	4	4
B	MET303	THERMAL ENGINEERING	$3-1-0$	4	4
C	MET305	INDUSTRIAL \& SYSTEMS ENGINEERING	$3-1-0$	4	4
D	MET307	MACHINE TOOLS AND METROLOGY	$3-1-0$	4	4
E $1 / 2$	HUT300	INDUSTRIAL ECONOMICS AND FOREIGN TRADE	$3-0-0$	3	3
	HUT310	MANAGEMENT FOR ENGINEERS	$3-0-0$	3	3
F	MCN301	DISASTER MANAGEMENT	$2-0-0$	2	--
S	MEL331	MACHINE TOOLS LAB-II	$0-0-3$	3	2
T	MEL333	THERMAL ENGINEERING LAB-I	$0-0-3$	3	2
R/M/H	VAC	REMEDIAL/MINOR/HONORS COURSE	$3-1-0$	$4 *$	4

NOTE:

1. Industrial Economics \& Foreign Trade and Management for Engineers shall be offered in both S5 and S6. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Industrial Economics \& Foreign Trade in S5 and Management for Engineers in S 6 and vice versa.
2. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 3 to 5 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.

SEMESTER VI

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MET302	HEAT \& MASS TRANSFER	3-1-0	4	4
B	MET304	DYNAMICS OF MACHINERY \& MACHINE DESIGN	$3-1-0$	4	4
C	MET306	ADVANCED MANUFACTURING ENGINEERING	$3-1-0$	4	4
D	METXXX	PROGRAM ELECTIVE I	2-1-0	3	3
E	HUT300	INDUSTRIAL ECONOMICS AND FOREIGN TRADE	3-0-0	3	3
1/2	HUT310	MANAGEMENT FOR ENGINEERS	3-0-0	3	3
F	MET308	COMPREHENSIVE COURSE WORK	1-0-0	1	1
S	MEL332	COMPUTER AIDED DESIGN \& ANALYSIS LAB	0-0-3	3	2
T	MEL334	THERMAL ENGINEERING LAB-II	0-0-3	3	2
$\begin{gathered} \text { R/M/ } \\ H \end{gathered}$	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
TOTAL				25/29	23/27

PROGRAM ELECTIVE I

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
D	MET312	NONDESTRUCTIVE TESTING	2-1-0	3	3
	MET322	DATA ANALYTICS FOR ENGINEERS	2-1-0		
	MET332	ADVANCED MECHANICS OF SOLIDS	2-1-0		
	MET342	IC ENGINE COMBUSTION AND POLLUTION	2-1-0		
	MET352	AUTOMOBILE ENGINEERING	2-1-0		
	MET362	PRODUCT DESIGN AND DEVELOPMENT	2-1-0		
	MET372	ADVANCED METAL JOINING TECHNIQUES	2-1-0		

NOTE:

1. Industrial Economics \& Foreign Trade and Management for Engineers shall be offered in both S5 and S6. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Industrial Economics \& Foreign Trade in S5 and Management for Engineers in S6 and vice versa.
2. **All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 2 to 4 PM and Wednesdays from 2 to 4 PM). If a student does not opt for minor/honors programme, he/she can be given remedial class.
3. Comprehensive Course Work: The comprehensive course work in the sixth semester of study shall have a written test of 50 marks. The written examination will be of objective type similar to the GATE examination and will be conducted online by the University. Syllabus for comprehensive examination shall be prepared by the respective BoS choosing any 5 core courses studied from semester 3 to 5 . The pass minimum for this course is 25 . The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum.

SEMESTER VII

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MET401	DESIGN OF MACHINE ELEMENTS	$2-1-0$	3	3
B	METXXX	PROGRAM ELECTIVE II	$2-1-0$	3	3
C	METXXX	OPEN ELECTIVE	$2-1-0$	3	3
D	MCN401	INDUSTRIAL SAFETY ENGINEERING	$2-1-0$	3	---
S	MEL411	MECHANICAL ENGINEERING LAB	$0-0-3$	3	2
T	MEQ413	SEMINAR	$0-0-3$	3	2
U	MED415	PROJECT PHASE I	$0-0-6$	6	2
R/M/ H	VAC	REMEDIAL/MINOR/HONORS COURSE	$3-1-0$	$4 *$	4

PROGRAM ELECTIVE II

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
B	MET413	ADVANCED METHODS IN NONDESTRUCTIVE TESTING	$2-1-0$		
	MET423	OPTIMIZATION TECHNIQUES AND APPLICATIONS	$2-1-0$	3	3
	MET433	FINITE ELEMENT METHOD	$2-1-0$		
	MET443	AEROSPACE ENGINEERING	$2-1-0$		
	MET453	HYBRID AND ELECTRIC VEHICLES	$2-1-0$		
	MET463	OPERATIONS MANAGEMENT	$2-1-0$		
	MET473	AIR CONDITIONING AND REFRIGERATION	$2-1-0$		

OPEN ELECTIVE

The open elective is offered in semester 7. Each program should specify the courses (maximum 5) they would like to offer as electives for other programs The courses listed below are offered by the Department of MECHANICAL ENGINEERING for students of other undergraduate branches offered in the college under KTU.

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
C	MET415	INTRODUCTION TO BUSINESS	2-1-0	3	3
		ANALYTICS			
	MET425	QUANTITATIVE TECHNIQUES FOR ENGINEERS	2-1-0		
	MET435	AUTOMOTIVE TECHNOLOGY	2-1-0		
	MET445	RENEWABLE ENERGY ENGINEERING	2-1-0		
	MET455	QUALITY ENGINEERING AND MANAGEMENT	2-1-0		

NOTE:

1. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honors course (Mondays from 10 to 12 and Wednesdays from 10 to 12 Noon). If a student does not opt for minor/honours programme, he/she can be given remedial class.
2. Seminar: To encourage and motivate the students to read and collect recent and reliable information from their area of interest confined to the relevant discipline from technical publications including peer reviewed journals, conference, books, project reports etc., prepare a report based on a central theme and present it before a peer audience. Each student shall present the seminar for about 20 minutes duration on the selected topic. The report and the presentation shall be evaluated by a team of internal members comprising three senior faculty members based on style of presentation, technical content, adequacy of references, depth of knowledge and overall quality of the report.
Total marks: 100, only CIE, minimum required to pass 50
Attendance : 10
Guide :20
Technical Content of the Report :30
Presentation :40
3. Project Phase I: A Project topic must be selected either from research literature or the students themselves may propose suitable topics in consultation with their guides. The object of Project Work I is to enable the student to take up investigative study in the broad field of Mechanical Engineering, either fully theoretical/practical or involving both theoretical and practical work to be assigned by the Department on a group of three/four students, under the guidance of a Supervisor. This is expected to provide a good initiation for the student(s) in R\&D work. The assignment to normally include:
> Survey and study of published literature on the assigned topic;
> Preparing an Action Plan for conducting the investigation, including team work;
> Working out a preliminary Approach to the Problem relating to the assigned topic;
> Block level design documentation
> Conducting preliminary Analysis/ Modelling/ Simulation/ Experiment/ Design/

Feasibility;
> Preparing a Written Report on the Study conducted for presentation to the Department;
> Final Seminar, as oral Presentation before the evaluation committee.
Total marks: 100, only CIE, minimum required to pass 50
Guide
: 30
Interim evaluation by the evaluation committee $: 20$
Final Seminar
The report evaluated by the evaluation committee: 30

The evaluation committee comprises HoD or a senior faculty member, Project coordinator and project supervisor.

SEMESTER VIII

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MET402	MECHATRONICS	$2-1-0$	3	3
B	METXXX	PROGRAM ELECTIVE III	$2-1-0$	3	3
C	METXXX	PROGRAM ELECTIVE IV	$2-1-0$	3	3
D	METXXX	PROGRAM ELECTIVE V	$2-1-0$	3	3
E	MET404	COMPREHENSIVE VIVA VOCE	$1-0-0$	1	1
U	MED416	PROJECT PHASE II	$0-0-12$	12	4
R/M/ H	VAC	REMEDIAL/MINOR/HONORS COURSE	$3-1-0$	$4 *$	4

PROGRAM ELECTIVE III

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
B	MET414	QUALITY MANAGEMENT	2-1-0	3	3
	MET424	DECISIONS WITH METAHEURISTICS	2-1-0		
	MET434	PRESSURE VESSEL AND PIPING DESIGN	2-1-0		
	MET444	COMPUTATIONAL FLUID DYNAMICS	2-1-0		
	MET454	Industrial tribology $\square_{\text {I }}$	2-1-0		
	MET464	MICRO AND NANO MANUFACTURING	2-1-0		
	MET474	HEATING AND VENTILATION SYSTEMS	2-1-0		

PROGRAM ELECTIVE IV

SLOT	$\begin{gathered} \hline \text { COURSE } \\ \text { NO. } \end{gathered}$	COURSES	L-T-P	HOURS	CREDIT
C	MET 416	COMPOSITE MATERIALS	2-1-0	3	3
	MET 426	ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING	2-1-0		
	MET 436	ACOUSTICS AND NOISE CONTROL	2-1-0		
	MET 446	HEAT TRANSFER EQUIPMENT DESIGN	2-1-0		
	MET 456	ROBOtICS AND AUTOMATION	2-1-0		
	MET 466	TECHNOLOGY MANAGEMENT	2-1-0		
	MET 476	CRYOGENIC ENGINEERING	2-1-0		

PROGRAM ELECTIVE V

NOTE

1. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12). If a student does not opt for minor/honors programme, he/she can be given remedial class.
2. Comprehensive Course Viva: The comprehensive course viva in the eighth semester of study shall have a viva voce for 50 marks. The viva voce shall be conducted based on the syllabus mentioned for comprehensive course work in the sixth semester. The viva voce will be conducted by the same three member committee assigned for final project phase II evaluation towards the end of the semester. The pass minimum for this course is 25 . The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum. The mark will be treated as internal and should be uploaded along with internal marks of other courses.
3. Project Phase II: The object of Project Work II \& Dissertation is to enable the student to extend further the investigative study taken up in Project 1, either fully theoretical/practical or involving both theoretical and practical work, under the guidance of a Supervisor from the Department alone or jointly with a Supervisor drawn from R\&D laboratory/Industry. This is expected to provide a good training for the student(s) in R\&D work and technical leadership. The assignment to normally include:
$>$ In depth study of the topic assigned in the light of the Report prepared under Phasel;
> Review and finalization of the Approach to the Problem relating to the assigned topic;
> Detailed Analysis/ Modelling/ Simulation/ Design/ Problem Solving/ Experiment as needed;
> Final development of product/process, testing, results, conclusions and future directions;
> Preparing a paper for Conference presentation/Publication in Journals, if possible;
> Preparing a Dissertation in the standard format for being evaluated by the Department;
> Final Presentation before a Committee
Total marks: 150, only CIE, minimum required to pass 75
Guide :30
Interim evaluation, 2 times in the semester by the evaluation committee :50
Quality of the report evaluated by the above committee $\quad: 30$
Final evaluation by a three member committee |h in : 40
(The final evaluation committee comprises Project coordinator, expert from Industry/research Institute and a senior faculty from a sister department. The same committee will conduct comprehensive course viva for 50 marks).

MINOR

Minor is an additional credential a student may earn if $s /$ he does 20 credits worth of additional learning in a discipline other than her/his major discipline of B.Tech. degree. The objective is to permit a student to customize their Engineering degree to suit their specific interests. Upon completion of an Engineering Minor, a student will be better equipped to perform interdisciplinary research and will be better employable. Engineering Minors allow a student to gain interdisciplinary experience and exposure to concepts and perspectives that may not be a part of their major degree programs.

The academic units offering minors in their discipline will prescribe the set of courses and/or other activities like projects necessary for earning a minor in that discipline. A specialist basket of 3-6 courses is identified for each Minor. Each basket may rest on one or more foundation courses. A basket may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. S / he accumulates credits by registering for the required courses, and if the requirements for a particular minor are met within the time limit for the course, the minor will be awarded. This will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx with Minor in yyy". The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, that minor will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.
(i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from third to eight semesters for all branches. The minor courses shall be identified by M slot courses.
(ii) Registration is permitted for Minor at the beginning of third semester. Total credits required is 182 (162 +20 credits from value added courses)
(iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum for minor, of which one course shall be a mini project based on the chosen area. They can do miniproject either in S7 or in S8. The remaining 8 credits could be acquired by undergoing 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Minor shall be conducted along with regular classes and no extra time shall be required for conducting the courses.
(iv) There won't be any supplementary examination for the courses chosen for Minor.
(v) On completion of the program, "Bachelor of Technology in xxx with Minor in yyy" will be awarded.
(vi) The registration for minor program will commence from semester 3 and the all academic units offering minors in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3 baskets. The basket of courses may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. Reshuffling of courses between various baskets will not be allowed. In any case, they should carry out a mini project based on the chosen area in S7 or S8. Students who have registered for B.Tech Minor in MECHANICAL ENGINEERING Branch can opt to study the courses listed below:

	BASKET I				BASKET II				BASKET III			
	Course No.	Course Name	$\begin{array}{\|c\|} \hline \mathbf{H} \\ \mathbf{O} \\ \mathbf{U} \\ \mathbf{R} \\ \mathbf{S} \end{array}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{R} \\ & \mathrm{E} \\ & \mathrm{D} \\ & \mathrm{I} \end{aligned}$ D \mathbf{T}	Course No.	Course Name	H O	$\begin{gathered} \hline \mathrm{C} \\ \mathrm{R} \\ \mathrm{E} \\ \mathrm{D} \\ \mathrm{I} \\ \mathrm{~T} \end{gathered}$	Course No.	Course Name	H \mathbf{O} U R	C R E D I T
S3	MET281	MECHANICS OF MATERIALS	4	4	MET283	FLUID MECHANICS \& MACHINERY	4	4	MET285	MATERIAL SCIENCE \& TECHNOLOGY	4	4
S4	MET282	THEORY OF MACHINES	4	4	MET284	THERMODYNAMICS	4	4	MET286	MANUFACTURIN G TECHNOLOGY	4	4
S5	MET381	DYNAMICS OF MACHINES	4	4	MET383	THERMAL ENGINEERING	4	4	MET385	MACHINE TOOLS ENGINEERING	4	4
S6	MET382	MACHINE DESIGN	4	4	MET384	HEAT TRANSFER	4	4	MET386	INDUSTRIAL ENGINEERING	4	4
S7	MED481	MINIPROJECT	4	4	MED481	MINIPROJECT	4	4	MED481	MINIPROJECT	4	4
S8	MED482	MINIPROJECT	4	4	MED482	MINIPROJECT	4	4	MED482	MINIPROJECT	4	4

HONOURS

Honours is an additional credential a student may earn if $s /$ he opts for the extra 20 credits needed for this in her/his own discipline. Honours is not indicative of class. KTU is providing this option for academically extra brilliant students to acquire Honours. Honours is intended for a student to gain expertise/specialise in an area inside his/her major B.Tech discipline and to enrich knowledge in emerging/advanced areas in the branch of engineering concerned. It is particularly suited for students aiming to pursue higher studies. Upon completion of Honours, a student will be better equipped to perform research in her/his branch of engineering. On successful accumulation of credits at the end of the programme, this will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx, with Honours." The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, Honours will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.
The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all
semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. The internal evaluation, examination and grading shall be exactly as for other mandatory courses. The Honours courses shall be identified by H slot courses.
(i) The curriculum/syllabus committee/BOS shall prepare syllabus for courses to be included in the curriculum from fourth to eight semesters for all branches. The honours courses shall be identified by H slot courses.
(ii) Registration is permitted for Honours at the beginning of fourth semester. Total credits required is 182 ($162+20$ credits from value added courses).
(iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum for honours, of which one course shall be a mini project based on the chosen area. The remaining 8 credits could be acquired by undergoing 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Honours shall be conducted along with regular classes and no extra time shall be required for conducting the courses. The students should earn a grade of ' C ' or better for all courses under honours.
(iv) There won't be any supplementary examination for the courses chosen for honours.
(v) On successful accumulation of credits at the end of the programme, "Bachelor of Technology in xxx, with Honours" will be awarded if overall CGPA is greater than or equal to 8.5 , earned a grade of ' C ' or better for all courses chosen for honours and without any history of ' F ' Grade.
(vi) The registration for honours program will commence from semester 4 and the all academic units offering honours in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. In any case, they should carry out a mini project based on the chosen area in S8. Students who have registered for B.Tech Honours in MECHANICAL ENGINEERING can opt to study the courses listed below.

$\begin{aligned} & \hline \text { SE } \\ & \mathrm{ME} \end{aligned}$	GROUP I				GROUP II				GROUP III			
$\begin{array}{\|l\|} \hline \text { STE } \\ \text { R } \end{array}$	Course No.	Course Name	$\begin{aligned} & \mathrm{H} \\ & \mathrm{O} \\ & \mathrm{U} \\ & \mathrm{R} \\ & \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { C } \\ & \text { R } \\ & \text { E } \\ & \text { D } \\ & \text { I } \\ & \text { T } \end{aligned}$	Course No.	Course Name	$\begin{aligned} & \mathrm{H} \\ & \mathrm{O} \\ & \mathrm{U} \\ & \mathrm{R} \\ & \mathrm{~S} \end{aligned}$	$\begin{gathered} \mathrm{C} \\ \mathrm{R} \\ \mathrm{E} \\ \mathrm{D} \\ \mathbf{I} \\ \mathrm{~T} \end{gathered}$	Course No.	Course Name	H O U R S	C R E D I T
S4	MET292	CONTINUUM MECHANICS	4	4	MET294	ADVANCED MECHANICS OF FLUIDS	4	4	MET296	MATERIALS IN MANUFACTURING	4	4
S5	MET393	EXPERIMENT AL STRESS	4	4	MET395	ADVANCED THERMODYNA	4	4	MET397	FLUID POWER	4	4

		ANALYSIS				MICS				AUTOMATION		
S6	MET394	ADVANCED DESIGN SYNTHESIS	4	4	MET396	COMPRESSIBL E FLUID FLOW	4	4	MET398	ADVANCED NUMERICAL CONTROLLED MACHINING	4	4
S7	MET495	ADVANCED THEORY OF VIBRATIONS	4	4	MET497	COMPUTATIO NAL METHODS IN FLUID FLOW \& HEAT TRANSFER	4	4	MET499	PRECISION MACHINING	4	4
S8	MED496	MINIPROJEC T	4	4	MED496	MINIPROJECT	4	4	MED496	MINIPROJECT	4	4

INDUCTION PROGRAM

There will be three weeks induction program for first semester students. It is a unique three-week immersion Foundation Programme designed especially for the fresher's which includes a wide range of activities right from workshops, lectures and seminars to sports tournaments, social work and much more. The programme is designed to mould students into well-rounded individuals, aware and sensitized to local and global conditions and foster their creativity, inculcate values and ethics, and help students to discover their passion. Foundation Programme also serves as a platform for the fresher's to interact with their batchmates and seniors and start working as a team with them. The program is structured around the following five themes:
The programme is designed keeping in mind the following objectives:

- Values and Ethics: Focus on fostering a strong sense of ethical judgment and moral fortitude.
- Creativity: Provide channels to exhibit and develop individual creativity by expressing themselves through art, craft, music, singing, media, dramatics, and other creative activities.
- Leadership, Communication and Teamwork: Develop a culture of teamwork and group communication.
- Social Awareness: Nurture a deeper understanding of the local and global world and our place in at as concerned citizens of the world.

[^0]: * Excluding Hours to be engaged for Remedial/Minor/Honors course.

