SEMESTER 3

ARTIFICIAL INTELLIGENCE & MACHINE LEARNING

MATHEMATICS FOR COMPUTER AND INFORMATION SCIENCE-3

Course Code	GAMAT301	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours 2 Hr. 30 Min	
Prerequisites (if any)	Basic calculus	Course Type	Theory

(Group A)

Course Objectives:

1. To familiarize students with the foundations of probability and analysis of random processes used in various applications in engineering and science.

SYLLABUS

Module No.	Syllabus Description			
1	Random variables, Discrete random variables and their probability distributions, Cumulative distribution function, Expectation, Mean and variance, the Binomial probability distribution, the Poisson probability distribution, Poisson distribution as a limit of the binomial distribution, Joint pmf of two discrete random variables, Marginal pmf, Independent random variables, Expected value of a function of two discrete variables. [Text 1: Relevant topics from sections 3.1 to 3.4, 3.6, 5.1, 5.2]	9		
2	Continuous random variables and their probability distributions, Cumulative distribution function, Expectation, Mean and variance, Uniform, Normal and Exponential distributions, Joint pdf of two Continuous random variables, Marginal pdf, Independent random variables, Expectation value of a function of two continuous variables. [Text 1: Relevant topics from sections 3.1, 4.1, 4.2, 4.3, 4.4, 5.1, 5.2]	9		

3	 Limit theorems : Markov's Inequality, Chebyshev's Inequality, Strong Law of Large Numbers (Without proof), Central Limit Theorem (without proof), Stochastic Processes: Discrete-time process, Continuous-time process, Counting Processes, The Poisson Process, Interarrival times (Theorems without proof) [Text 2: Relevant topics from sections 2.7, 2.9, 5.3] 	9
4	Markov Chains, Random Walk Model, Chapman–Kolmogorov Equations, Classification of States, Irreducible Markov chain, Recurrent state, Transient state, Long-Run Proportions. (Theorems without proof) [Text 2: Relevant topics from sections 4.1, 4.2, 4.3, 4.4]	9

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject Internal (Written)		Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0)
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
C01	Understand the concept, properties and important models of discrete random variables and to apply in suitable random phenomena.	К3
CO2	Understand the concept, properties and important models of continuous random variables and to apply in suitable random phenomena.	К3
CO3	Familiarize and apply limit theorems and to understand the fundamental characteristics of stochastic processes.	К3
CO4	Solve problems involving Markov Chains, to understand their theoretical foundations and to apply them to model and predict the behaviour of various stochastic processes.	K3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	-	2	-	-	-	-	-	-	-	2
CO2	3	3	-	2	-	-	-	-	-	-	-	2
CO3	3	3	-	2	-	-	-	-	-	-	-	2
CO4	3	3	-	2	-	-	-	-	-	-	-	2

		Text Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Probability and Statistics for Engineering and the Sciences	Devore J. L	Cengage Learning	9 th edition, 2016
2	Introduction to Probability Models	Sheldon M. Ross	Academic Press	13 th edition, 2024

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Probability and Random Processes for Electrical and Computer Engineers	John A. Gubner	Cambridge University Press	2012		
2	Probability Models for Computer Science	Sheldon M. Ross	Academic Press	1 st edition, 2001		
3	Probability, Random Variables and Stochastic Processes	Papoulis, A. & Pillai, S.U.,	Tata McGrawHill.	4 th edition, 2002		
4	Probability, Statistics and Random Processes	Kousalya Pappu	Pearson	2013		

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://onlinecourses.nptel.ac.in/noc22_mg31/preview					
2	https://onlinecourses.nptel.ac.in/noc22_mg31/preview					
3	https://archive.nptel.ac.in/courses/108/103/108103112/					
4	https://archive.nptel.ac.in/courses/108/103/108103112/					

MACHINE LEARNING I

Course Code	PCAMT302	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives

- 1. To teach different machine learning paradigms and parameter estimation methods.
- **2.** To enable the learner to apply the various algorithms of supervised learning in real world contexts and analyse the overfitting and underfitting issues in machine learning models. Also equip them with various ensemble mechanisms.
- **3.** To impart the knowledge on how to evaluate the different performance measures for analysing the performance of classification models.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
1	Machine Learning Paradigms:-Supervised Learning, Unsupervised Learning, Semi Supervised Learning,Reinforcement LearningParameter Estimation Methods:-Maximum Likelihood Estimation (MLE), Maximum Aposteriori Estimation(MAP), Bayes Estimation, Least Square Estimation (LS), Minimum MeanSquare Estimation (MMSE), The Gradient Descent Method and its variants(Simple Gradient Descent Method, Stochastic Gradient Method, BatchGradient Method), Illustrative examples of parameter estimation using differentmethods	12
2	 Supervised Learning Models:- Regression - Regression Models (Simple Regression, Multivariable linear Regression, Polynomial Regression, Logistic Regression), Illustrative examples of designing regression models; Decision Trees - Working Principle, Decision Tree formation using ID3 Algorithm, The Classification and Regression Trees Algorithm (CART), Illustrative examples on designing decision trees; Overfitting and Underfitting :- Bias and Variance, Bias-Variance Trade-off, Regularization (Ridge, Lasso and Elastic Net Regularization techniques) 	12

3	More Supervised Learning Methods:- Support Vector machines (SVM) - Maximum Margin Classification, Mathematics behind Maximum Margin Classification, Hard Margin SVM, Soft Margin SVM, Non-Linear SVM, The Kernel Trick, Different Kernel Functions (Linear Kernel, Polynomial Kernel, RBF Kernel, Sigmoid Kernel); K-Nearest Neighbour Classifier (KNN):- Working Principle, Illustrative examples on designing KNN Classifiers; Naive Bayes Classifier - Working Principle, Types of Naive Bayes Classifiers, Illustrative examples.	12
4	 Ensemble Learning:- Basic Techniques (Voting, Simple and Weighted Averaging Techniques), Advanced Techniques (Bagging, Boosting, Stacking) - The Random Forest Classifier Assessment of Classification Models:- Performance measures- Confusion Matrix, Accuracy, Precision, Recall, F1- Score, Receiver Operating Characteristics Curve (ROC), Area Under the Curve (AUC), Illustrative examples on Classification model assessment 	8

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. 	60
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain different machine learning paradigms and parameter estimation methods.	К2
CO2	Demonstrate the various algorithms of supervised learning.	K3
CO3	Illustrate the notions of bias, variance and analyse the overfitting and underfitting issues in machine learning models.	K2
CO4	Evaluate the different performance measures for analysing the performance of different classification models.	K4
CO5	Make use of different ensembling techniques to form better machine learning models than conventional ones.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	3	3								2
CO2	2	3	3	3								2
CO3	2	3	3	3								2
CO4	2	3	3	3								2
CO5	2	3	3	3								2

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Machine Learning	Tom M. Mitchell	Tata McGraw Hill	1/e, 2017			
2	The Elements of Statistical Learning Data Mining, Inference, and Prediction	Trevor Hastie Robert Tibshirani Jerome Friedman	Springer Publishers	2/e, 2017			
3	Understanding Machine Learning: From Theory to Algorithms	Shai Shalev-Shwartz, Shai Ben-David	Cambridge University Press	1/e, 2014			

	Reference Books					
Sl. No	Title of the Book	Title of the BookName of the Author/s		Edition and Year		
1	Introduction to Machine Learning	Ethem Alpaydin	MIT Press	3/e, 2015		

Video Links (NPTEL, SWAYAM)				
Module No.	Link ID			
1	https://youtu.be/W0UPIwETZWM?si=OR-iRu9pybEhVYsJ (MLE Estimator) https://youtu.be/qpGo87YV1R0?si=DvOiuRj973ogvhak (MAP Estimator)			
2	https://youtu.be/MXTsSXIa4i0?si=QtAToZt5EbtQ6914 (Linear Regression) https://youtu.be/d_bynTkE9yY?si=2Q2ZlVxSjdVsQWRO (Logistic Regression) https://youtu.be/yG1nETGyW2E?si=CKpG_MY4PqsQjddn (Decision Trees)			
3	https://youtu.be/SRVswRH5Q7E?si=JViz8hye8WIzXjNe (SVM) https://youtu.be/2ATqoglcHus?si=6h1LTNeKsuHWHfwP (KNN) https://youtu.be/uQSn3oLVu-8?si=1XnPc-YZco0HGqz7 (Naive Bayes)			
4	https://youtu.be/foWzsWFAmas?si=wG0L6iB6G_3Y3vJc (Ensemble Methods) https://youtu.be/Sowy3iZyRVk?si=k7OEthBZU6t9S4TJ (Performance Measures)			

DATA STRUCTURES AND ALGORITHMS

(Common to CS/CA/CM/CD/CR/AI/AM/AD/CB/CN/CC/CU/CI/CG)

Course Code	PCCST303	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	UCEST105	Course Type	Theory

Course Objectives:

- 1. To provide the learner a comprehensive understanding of data structures and algorithms.
- **2.** To prepare them for advanced studies or professional work in computer science and related fields.

Module No.	Syllabus Description	Contact Hours
1	Basic Concepts of Data Structures Definitions; Data Abstraction; Performance Analysis - Time & Space Complexity, Asymptotic Notations; Polynomial representation using Arrays, Sparse matrix (<i>Tuple representation</i>); Stacks and Queues - Stacks, Multi- Stacks, Queues, Circular Queues, Double Ended Queues; Evaluation of Expressions- Infix to Postfix, Evaluating Postfix Expressions.	11
2	Linked List and Memory Management Singly Linked List - Operations on Linked List, Stacks and Queues using Linked List, Polynomial representation using Linked List; Doubly Linked List; Circular Linked List; Memory allocation - First-fit, Best-fit, and Worst- fit allocation schemes; Garbage collection and compaction.	11
3	Trees and Graphs Trees :- Representation Of Trees; Binary Trees - Types and Properties, Binary Tree Representation, Tree Operations, Tree Traversals; Expression Trees; Binary Search Trees - Binary Search Tree Operations; Binary Heaps - Binary Heap Operations, Priority Queue.	11

	Graphs :- Definitions; Representation of Graphs; Depth First Search and Breadth First Search; Applications of Graphs - Single Source All	
	Destination.	
	Sorting and Searching Sorting Techniques :- Selection Sort, Insertion Sort, Quick Sort, Merge Sort,	
4	Heap Sort, Radix Sort. Searching Techniques :- Linear Search, Binary Search, Hashing - Hashing	11
	functions : Mid square, Division, Folding, Digit Analysis; Collision Resolution : Linear probing, Quadratic Probing, Double hashing, Open hashing.	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	• Total of 8 Questions, each of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	
	divisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Identify appropriate data structures for solving real world problems.	К3
CO2	Describe and implement linear data structures such as arrays, linked lists, stacks, and queues.	К3
CO3	Describe and Implement non linear data structures such as trees and graphs.	К3
CO4	Select appropriate searching and sorting algorithms to be used in specific circumstances.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3									3

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Fundamentals of Data Structures in C	Ellis Horowitz, Sartaj Sahni and Susan Anderson-Freed,	Universities press,	2/e, 2007				
2	Introduction to Algorithms	Thomas H Cormen, Charles Leisesrson, Ronald L Rivest, Clifford Stein	PHI	3/e, 2009				

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Classic Data Structures	Samanta D.	Prentice Hall India.	2/e, 2018				
2	Data Structures and Algorithms	Aho A. V., J. E. Hopcroft and J. D. Ullman	Pearson Publication.	1/e, 2003				
3	Introduction to Data Structures with Applications	Tremblay J. P. and P. G. Sorenson	Tata McGraw Hill.	2/e, 2017				
4	Theory and Problems of Data Structures	Lipschuts S.	Schaum's Series	2/e, 2014				

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://nptel.ac.in/courses/106102064					
2	https://ocw.mit.edu/courses/6-851-advanced-data-structures-spring-2012/					

OBJECT ORIENTED PROGRAMMING

(Common to CS/CA/CD/AM/CB/CN/CU/CG)

Course Code	PBCST304	CIE Marks	60
Teaching Hours/Week (L:T:P:R)	3:0:0:1	ESE Marks	40
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To teach the core object-oriented principles such as abstraction, encapsulation, inheritance, and polymorphism, robust error-handling using exception mechanisms to ensure program reliability.
- 2. To equip the learner to develop object oriented programs encompassing fundamental structures, environments, and the effective utilization of data types, arrays, strings, operators, and control statements for program flow in Java.
- **3.** To enable the learner to design and develop event-driven graphical user interface (GUI) database applications using Swing and database connection components.

S	YL	LA	BI	JS

Module No.	Syllabus Description	Contact Hours
1	 Introduction to Java: Structure of a simple java program; Java programming Environment and Runtime Environment (Command Line & IDE); Java compiler; Java Virtual Machine; Primitive Data types and Wrapper Types; Casting and Autoboxing; Arrays; Strings; Vector class; Operators - Arithmetic, Bitwise, Relational, Boolean Logical, Assignment, Conditional (Ternary); Operator Precedence; Control Statements - Selection Statements, Iteration Statements and Jump Statements; Functions; Command Line Arguments; Variable Length Arguments; Classes; Abstract Classes; Interfaces. [<i>Use proper naming</i> <i>conventions</i>] OOP Concepts :- Data abstraction, encapsulation, inheritance, polymorphism, Procedural and object oriented programming paradigm; Microservices. 	10

	Object Oriented Programming in Java :-	
	Declaring Objects; Object Reference; Introduction to Methods; Constructors;	
	Access Modifiers; <i>this</i> keyword.	
	Polymorphism :-	
	Method Overloading, Using Objects as Parameters, Returning Objects,	
	Recursion.	
	Static Members, Final Variables, Inner Classes.	
2		8
	Inheritance - Super Class, Sub Class, Types of Inheritance, The super	
	keyword, protected Members, Calling Order of Constructors.	
	Method Overriding, Dynamic Method Dispatch, Using <i>final</i> with Inheritance.	
	Packages and Interfaces –	
	Packages - Defining a Package, CLASSPATH, Access Protection, Importing	
	Packages.	
	Interfaces - Interfaces v/s Abstract classes, defining an interface,	
	implementing interfaces, accessing implementations through interface	
3	references, extending interface(s).	9
_		
	Exception Handling - Checked Exceptions, Unchecked Exceptions, <i>try</i> Block	
	and catch Clause, Multiple catch Clauses, Nested try Statements, throw,	
	throws and finally, Java Built-in Exceptions, Custom Exceptions.	
	Introduction to design patterns in Java : Singleton and Adaptor.	
	SOLID Principles in Java (https://www.javatpoint.com/solid-principles-	
	java)	
	Swings fundamentals – Overview of AWT, Swing v/s AWT, Swing Key	
	Features, Model View Controller (MVC), Swing Controls, Components and	
	Containers, Swing Packages, Event Handling in Swings, Swing Layout	
	Managers, Exploring Swings–JFrame, JLabel, The Swing Buttons,	
4	JTextField.	10
4		10
	Event handling – Event Handling Mechanisms, Delegation Event Model,	
	Event Classes, Sources of Events, Event Listener Interfaces, Using the	
	Delegation Event Model.	
	Developing Database Applications using JDBC – JDBC overview, Types,	
	Steps, Common JDBC Components, Connection Establishment, SQL	

Fundamentals [For projects only] - Creating and Executing basic SQL	1
Queries, Working with Result Set, Performing CRUD Operations with JDBC.	l

Suggestion on Project Topics

Student should Identify a topic to be implemented as project having the following nature

- *i.* It must accept a considerable amount of information from the user for processing.
- *ii. It must have a considerable amount of data to be stored permanently within the computer as plain files / using databases..*
- *iii.* It must process the user provided data and the stored data to generate some output to be displayed to the user.

Examples : -

 Design and implement the Circulation function in a Library Management System using Object-Oriented Programming (OOP) principles in Java and limited use of SQL. The system should manage the operations of a library, such as book & user management, borrowing and returning books.

Requirements

- I. Class Design
 - Book: Attributes like title, author, ISBN, genre, and status (available/borrowed).
 - User: Attributes like user ID, name, contact information, and a list of borrowed books.
 - Library: Attributes like a list of books and a list of users.
 - Librarian: Inherits from User, with additional functionalities like adding/removing books and managing users.
 - BorrowTransaction: Attributes like transaction ID, book, user, borrow date, and return date
- II. Functionalities
 - a. Book Management:
 - Add, remove, and update book details.
 - Search books by title, author, ISBN, and genre.
 - b. User Management:
 - Register new users.
 - Search users by user ID and name.
 - c. Borrowing and Returning:

- Borrow a book: Check if the book is available and if the user can borrow more books.
- Return a book: Update the book's status and remove it from the user's borrowed list.
- III. Deliverables
 - 1. Design Document: Describe the classes, their attributes, methods and relationships.
 - 2. Source Code: Well-documented Java code implementing the described functionalities.
 - 3. User Manual: Instructions on how to set up, run and use the system.
 - 4. Test Cases: A suite of test cases demonstrating the functionality of the system.
- Design and implement an Online Payment Processing System using Object-Oriented Programming(OOP) principles in Java, with a focus on dynamic polymorphism. The system should support different types of payment methods and demonstrate polymorphism in processing payments.

Requirements

- a. Class Design
 - Payment: An abstract base class with common attributes and an abstract method for processing payments.
 - CreditCardPayment: Inherits from Payment, with specific implementation for processing credit card payments.
 - PayPalPayment: Inherits from Payment, with specific implementation for processing PayPal payments.
 - BankTransferPayment: Inherits from Payment, with specific implementation for processing bank transfer payments.
 - PaymentProcessor: A class to manage and process different types of payments.
- b. Functionalities
 - Add Payment Method: Add new payment methods (CreditCardPayment, PayPalPayment, BankTransferPayment) to the system.
 - Process Payment: Demonstrate dynamic polymorphism by processing payments using different methods.
- c. Deliverables
 - Design Document: Describe the classes, their attributes, methods and relationships.
 - Source Code: Well-documented Java code implementing the described functionalities.

- User Manual: Instructions on how to set up, run and use the system.
- Test Cases: A suite of test cases demonstrating the functionality of the system.

Course Assessment Method (CIE: 60 marks, ESE: 40 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Project	Internal Ex-1	Internal Ex-2	Total
5	30	12.5	12.5	60

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 2 marks (8x2 =16 marks) 	 2 questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 2 subdivisions. E ach question carries 6 marks. (4x6 = 24 marks) 	40

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the process of writing, compiling, and executing basic Java programs, including their structure and components, to demonstrate proficiency.	K2
CO2	Utilize object-oriented programming principles in the design and implementation of Java applications.	К3
CO3	Develop and manage Java packages and interfaces, enhancing code modularity and reusability.	К3
CO4	Implement error handling using Java's exception mechanisms and leverage interfaces for modular applications.	К3
CO5	Develop event-driven Java GUI applications with database connectivity using Swing and JDBC.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3										3
CO2	3	3	3									3
CO3	3	3	3		3							3
CO4	3	3	3		3							3
CO5	3	3	3		3							3

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Java: The Complete Reference	Herbert Schildt	Tata McGraw Hill	13/e, 2024					
2	Introduction to Java Programming, Comprehensive Version	Y Daniel Liang	Pearson	10/e, 2014					
3	Head First Design Patterns	Eric Freeman, Elisabeth Robson, Bert Bates, Kathy Sierra	O'Reilly Media	1/e, 2004					

	Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Head First Java: A Brain Friendly Guide	Kathy Sierra & Bert Bates	O'Reilly	3/e, 2022					
2	JAVA TM for Programmers	Paul Deitel	PHI	11/e, 2018					
3	Clean Code : A Handbook of Agile Software Craftsmanship	Robert C. Martin	Prentice Hall	1/e, 2008					
4	Programming with Java	E Balagurusamy	McGraw Hill Education	6/e, 2019					
5	Java For Dummies	Barry A. Burd	Wiley	8/e.2022					
6	Effective Java	Joshua Bloch	Pearson	3/e, 2018					

	Video Links (NPTEL, SWAYAM)						
Module No.	Link ID						
1	https://nptel.ac.in/courses/106105191 (Lecture no: 9, 10, 1, 2, 3, 4)						
2	https://nptel.ac.in/courses/106105191 (Lecture no: 1, 7, 8, 11, 12, 13, 14, 15, 16)						
3	https://nptel.ac.in/courses/106105191 (Lecture no: 17, 18, 19, 20, 21, 22, 23, 24, 25, 26)						
4	https://nptel.ac.in/courses/106105191 (Lecture no: 43, 44, 45, 46, 47, 50, 51, 52, 53, 54, 55)						

PBL Course Elements

L: Lecture	R: Pro	R: Project (1 Hr.), 2 Faculty Members				
(3 Hrs.)	Tutorial	Practical	Presentation			
Lecture delivery	Project identification	Simulation/ Laboratory Work/ Workshops	Presentation(Progress and FinalPresentations)			
Group discussion	Project Analysis	Data Collection	Evaluation			
Question answer Sessions/ Brainstorming Sessions	Analytical thinking and self-learning	Testing	Project Milestone Reviews, Feedback, Project reformation (If required)			
Guest Speakers (Industry Experts)	Case Study/ Field Survey Report	Prototyping	Poster Presentation/ Video Presentation: Students present their results in a 2 to 5 minutes video			

Assessment and Evaluation for Project Activity

Sl. No	Evaluation for	Allotted Marks
1	Project Planning and Proposal	5
2	Contribution in Progress Presentations and Question Answer Sessions	4
3	Involvement in the project work and Team Work	3
4	Execution and Implementation	10
5	Final Presentations	5
6	Project Quality, Innovation and Creativity	3
	Total	30

1. Project Planning and Proposal (5 Marks)

- Clarity and feasibility of the project plan
- Research and background understanding
- Defined objectives and methodology

2. Contribution in Progress Presentation and Question Answer Sessions (4 Marks)

- Individual contribution to the presentation
- Effectiveness in answering questions and handling feedback

3. Involvement in the Project Work and Team Work (3 Marks)

- Active participation and individual contribution
- Teamwork and collaboration

4. Execution and Implementation (10 Marks)

- Adherence to the project timeline and milestones
- Application of theoretical knowledge and problem-solving
- Final Result

5. Final Presentation (5 Marks)

- Quality and clarity of the overall presentation
- Individual contribution to the presentation
- Effectiveness in answering questions

6. Project Quality, Innovation, and Creativity (3 Marks)

- Overall quality and technical excellence of the project
- Innovation and originality in the project
- Creativity in solutions and approaches

DIGITAL ELECTRONICS AND LOGIC DESIGN

Course Code	GAEST305	CIE Marks	40
Teaching Hours/Week (L:T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

(Common to Group A)

Course Objectives:

- 1. To familiarize the basic concepts of Boolean algebra and digital systems.
- **2.** To enable the learner to design simple combinational and sequential logic circuits which is essential in understanding organization & design of computer systems.

SYLLABUS

Module No.	Syllabus Description	Contact Hours				
	Introduction to digital Systems :- Digital abstraction					
	Number Systems - Binary, Hexadecimal, grouping bits, Base conversion;					
	Binary Arithmetic – Addition and subtraction, Unsigned and Signed numbers;					
	Fixed-Point Number Systems; Floating-Point Number Systems					
	Basic gates- Operation of a Logic circuit; Buffer; Gates - Inverter, AND gate,					
	OR gate, NOR gate, NAND gate, XOR gate, XNOR gate; Digital circuit					
1	operation - logic levels, output dc specifications, input dc specifications, noise					
	margins, power supplies; Driving loads - driving other gates, resistive loads					
	and LEDs.					
	Verilog (Part 1) :-					
	HDL Abstraction; Modern digital design flow - Verilog constructs: data types,					
	the module, Verilog operators.					
	Combinational Logic Design: –					
2	Boolean Algebra - Operations, Axioms, Theorems; Combinational logic	11				
	analysis - Canonical SOP and POS, Minterm and Maxterm equivalence; Logic					

	minimization - Algebraic minimization, K-map minimization, Dont cares,	
	Code convertors.	
	Modeling concurrent functionality in Verilog:-	
	Continuous assignment - Continuous Assignment with logical operators,	
	Continuous assignment with conditional operators, Continuous assignment	
	with delay.	
	MSI Logic and Digital Building Blocks	
	MSI logic - Decoders (One-Hot decoder, 7 segment display decoder),	
	Encoders, Multiplexers, Demultiplexers; Digital Building Blocks - Arithmetic	
3	Circuits - Half adder, Full adder, half subtractor, full subtractor; Comparators.	8
	Structural design and hierarchy - lower level module instantiation, gate level primitives, user defined primitives, adding delay to primitives.	
	Sequential Logic Design :- Latches and Flip-Flops- SR latch, SR latch with	
	enable, JK flipflop, D flipflop, Register Enabled Flip-Flop, Resettable Flip-	
	Flop. Sequential logic timing considerations; Common circuits based on	
	sequential storage devices - toggle flop clock divider, asynchronous ripple	
	counter, shift register.	
4	Finite State Machines :-	14
	Finite State Machines - logic synthesis for an FSM, FSM design process and	
	design examples; Synchronous Sequential Circuits - Counters;	
	Verilog (Part 2) : -	
	Procedural assignment; Conditional Programming constructs; Test benches;	
	Modeling a D flipflop in Verilog; Modeling an FSM in Verilog.	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks. (8x3 =24 marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome				
CO1	Summarize the basic concept of different number systems and perform conversion and arithmetic operations between different bases.	К2			
CO2	Interpret a combinational logic circuit to determine its logic expression, truth table, and timing information and to synthesize a minimal logic circuit through algebraic manipulation or with a Karnaugh map.	K2			
CO3	Illustrate the fundamental role of hardware description languages in modern digital design and be able to develop the hardware models for different digital circuits.	К3			
CO4	Develop MSI logic circuits using both the classical digital design approach and the modern HDL-based approach.	К3			
CO5	Develop common circuits based on sequential storage devices including counter, shift registers and a finite state machine using the classical digital design approach and an HDL-based structural approach.	К3			

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3	3								3
CO3	3	3	3	3	3							3
CO4	3	3	3	3	3							3
CO5	3	3	3	3	3							3

Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Introduction to Logic Circuits & Logic Design with Verilog	Brock J. LaMeres	Springer International Publishing	2/e, 2017			
2	Digital Design and Computer Architecture - RISC-V Edition	Sarah L. Harris, David Harris	Morgan Kaufmann	1/e, 2022			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Digital Design with an Introduction to the Verilog HDL, VHDL, and System Verilog	M Morris Mano, Michael D Ciletti	Pearson	6/e, 2018			
2	Digital Fundamentals	Thomas Floyd	Pearson	11/e, 2015			
3	Fundamentals of Digital Logic with Verilog Design	Stephen Brown, Zvonko Vranesic	McGrawHill	3/e, 2014			
4	Switching and Finite Automata Theory	Zvi Kohavi Niraj K. Jha	Cambridge University Press	3/e, 2010			

	Video Links (NPTEL, SWAYAM)						
Sl. No.	Link ID						
1	https://nptel.ac.in/courses/117105080						
2	https://onlinecourses.nptel.ac.in/noc21_ee39/						
3	https://onlinecourses.nptel.ac.in/noc24_cs61/						

ECONOMICS FOR ENGINEERS

(Common to All Branches)

Course Code	UCHUT346	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	2:0:0:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Understanding of finance and costing for engineering operation, budgetary planning and control
- 2. Provide fundamental concept of micro and macroeconomics related to engineering industry
- 3. Deliver the basic concepts of Value Engineering.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
1	Basic Economics Concepts - Basic economic problems - Production Possibility Curve - Utility - Law of diminishing marginal utility - Law of Demand - Law of supply - Elasticity - measurement of elasticity and its applications - Equilibrium- Changes in demand and supply and its effects Production function - Law of variable proportion - Economies of Scale - Internal and External Economies - Cobb-Douglas Production Function	6
2	Cost concepts – Social cost, private cost – Explicit and implicit cost – Sunk cost - Opportunity cost - short run cost curves - Revenue concepts Firms and their objectives – Types of firms – Markets - Perfect Competition – Monopoly - Monopolistic Competition - Oligopoly (features and equilibrium of a firm)	6
3	Monetary System – Money – Functions - Central Banking –Inflation - Causes and Effects – Measures to Control Inflation - Monetary and Fiscal policies – Deflation Taxation – Direct and Indirect taxes (merits and demerits) - GST	6

	National income – Concepts - Circular Flow – Methods of Estimation and Difficulties - Stock Market – Functions- Problems faced by the Indian stock market-Demat Account and Trading Account – Stock market Indicators- SENSEX and NIFTY	
4	Value Analysis and value Engineering - Cost Value, Exchange Value, Use Value, Esteem Value - Aims, Advantages and Application areas of Value Engineering - Value Engineering Procedure - Break-even Analysis - Cost- Benefit Analysis - Capital Budgeting - Process planning	6

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Case study/Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
10	15	12.5	12.5	50

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• Minimum 1 and Maximum	• 2 questions will be given from each module, out	
2 Questions from each	of which 1 question should be answered.	
module.	• Each question can have a maximum of 2 sub	
• Total of 6 Questions, each	divisions.	50
carrying 3 marks	• Each question carries 8 marks.	
(6x3 =18marks)	(4x8 = 32 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome						
CO1	Understand the fundamentals of various economic issues using laws and learn the concepts of demand, supply, elasticity and production function.	K2					
CO2	Develop decision making capability by applying concepts relating to costs and revenue, and acquire knowledge regarding the functioning of firms in different market situations.	K3					
CO3	Outline the macroeconomic principles of monetary and fiscal systems, national income and stock market.	K2					
CO4	Make use of the possibilities of value analysis and engineering, and solve simple business problems using break even analysis, cost benefit analysis and capital budgeting techniques.	K3					

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	-	-	-	1	-	-	-	-	1	-
CO2	-	-	-	-	-	1	1	-	-	-	1	-
CO3	-	-	-	-	1	-	-	-	-	-	2	-
CO4	-	-	-	-	1	1	-	-	-	-	2	-

	Text Books										
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year							
1	Managerial Economics	Geetika, Piyali Ghosh and Chodhury	Tata McGraw Hill,	2015							
2	Engineering Economy	Engineering Economy H. G. Thuesen, W. J. Fabrycky		1966							
3	Engineering Economics	R. Paneerselvam	РНІ	2012							

	Reference Books										
Sl. No	Title of the Book	Title of the BookName of the Author/s									
1	Engineering Economy	Leland Blank P.E, Anthony Tarquin P. E.	Mc Graw Hill	7 TH Edition							
2	Indian Financial System	Khan M. Y.	Tata McGraw Hill	2011							
3	Engineering Economics and analysis	Donald G. Newman, Jerome P. Lavelle	Engg. Press, Texas	2002							
4	Contemporary Engineering Economics	Chan S. Park	Prentice Hall of India Ltd	2001							

Course Code	UCHUT347	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	2:0:0:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

ENGINEERING ETHICS AND SUSTAINABLE DEVELOPMENT

Course Objectives:

- 1. Equip with the knowledge and skills to make ethical decisions and implement gender-sensitive practices in their professional lives.
- 2. Develop a holistic and comprehensive interdisciplinary approach to understanding engineering ethics principles from a perspective of environment protection and sustainable development.
- 3. Develop the ability to find strategies for implementing sustainable engineering solutions.

SYLLABUS

Module No.	Syllabus Description							
1	 Fundamentals of ethics - Personal vs. professional ethics, Civic Virtue, Respect for others, Profession and Professionalism, Ingenuity, diligence and responsibility, Integrity in design, development, and research domains, Plagiarism, a balanced outlook on law - challenges - case studies, Technology and digital revolution-Data, information, and knowledge, Cybertrust and cybersecurity, Data collection & management, High technologies: connecting people and places-accessibility and social impacts, Managing conflict, Collective bargaining, Confidentiality, Role of confidentiality in moral integrity, Codes of Ethics. Basic concepts in Gender Studies - sex, gender, sexuality, gender spectrum: beyond the binary, gender identity, gender expression, gender stereotypes, Gender disparity and discrimination in education, employment and everyday life, History of women in Science & Technology, Gendered technologies & innovations, Ethical values and practices in connection with 	6						

	gender - equity, diversity & gender justice, Gender policy and						
	women/transgender empowerment initiatives.						
	Introduction to Environmental Ethics: Definition, importance and						
	historical development of environmental ethics, key philosophical theories						
	(anthropocentrism, biocentrism, ecocentrism). Sustainable Engineering						
	Principles: Definition and scope, triple bottom line (economic, social and						
	environmental sustainability), life cycle analysis and sustainability metrics.						
2	Ecosystems and Biodiversity: Basics of ecosystems and their functions,	6					
	Importance of biodiversity and its conservation, Human impact on ecosystems						
	and biodiversity loss, An overview of various ecosystems in Kerala/India, and						
	its significance. Landscape and Urban Ecology: Principles of landscape						
	ecology, Urbanization and its environmental impact, Sustainable urban						
	planning and green infrastructure.						
	Hydrology and Water Management: Basics of hydrology and water cycle,						
	Water scarcity and pollution issues, Sustainable water management practices,						
	Environmental flow, disruptions and disasters. Zero Waste Concepts and						
	Practices: Definition of zero waste and its principles, Strategies for waste						
	reduction, reuse, reduce and recycling, Case studies of successful zero waste						
	initiatives. Circular Economy and Degrowth: Introduction to the circular						
3	economy model, Differences between linear and circular economies, degrowth	6					
	principles, Strategies for implementing circular economy practices and						
	degrowth principles in engineering. Mobility and Sustainable						
	Transportation: Impacts of transportation on the environment and climate,						
	Basic tenets of a Sustainable Transportation design, Sustainable urban						
	mobility solutions, Integrated mobility systems, E-Mobility, Existing and						
	upcoming models of sustainable mobility solutions.						
	Renewable Energy and Sustainable Technologies: Overview of renewable						
	energy sources (solar, wind, hydro, biomass), Sustainable technologies in						
	energy production and consumption, Challenges and opportunities in						
	renewable energy adoption. Climate Change and Engineering Solutions:						
4	Basics of climate change science, Impact of climate change on natural and	6					
•	human systems, Kerala/India and the Climate crisis, Engineering solutions to	Ū					
	mitigate, adapt and build resilience to climate change. Environmental						
	Policies and Regulations: Overview of key environmental policies and						
	regulations (national and international), Role of engineers in policy						
	implementation and compliance, Ethical considerations in environmental						

policy-making. Case Studies and Future Directions: Analysis of real-world								
case studies, Emerging trends and future directions in environmental ethics								
and sustainability, Discussion on the role of engineers in promoting a								
sustainable future.								

Course Assessment Method (CIE: 50 marks, ESE: 50)

Continuous Internal Evaluation Marks (CIE):

Continuous internal evaluation will be based on individual and group activities undertaken throughout the course and the portfolio created documenting their work and learning. The portfolio will include reflections, project reports, case studies, and all other relevant materials.

- The students should be grouped into groups of size 4 to 6 at the beginning of the semester. These groups can be the same ones they have formed in the previous semester.
- Activities are to be distributed between 2 class hours and 3 Self-study hours.
- The portfolio and reflective journal should be carried forward and displayed during the 7th Semester Seminar course as a part of the experience sharing regarding the skills developed through various courses.

SI. No.	Item	Particulars	Group/I ndividua l (G/I)	Marks
1	Reflective Journal	Weekly entries reflecting on what was learned, personal insights, and how it can be applied to local contexts.	Ι	5
2	Micro project (Detailed documentation of	 1 a) Perform an Engineering Ethics Case Study analysis and prepare a report 1 b) Conduct a literature survey on 'Code of Ethics for Engineers' and prepare a sample code of ethics 	G	8
	the project, including methodologies, findings, and	2. Listen to a TED talk on a Gender-related topic, do a literature survey on that topic and make a report citing the relevant papers with a specific analysis of the Kerala context	G	5
	reflections)	 Undertake a project study based on the concepts of sustainable development* - Module II, Module III & Module IV 	G	12
3	Activities	2. One activity* each from Module II, Module III & Module IV	G	15
4	Final Presentation	A comprehensive presentation summarising the key takeaways from the course, personal reflections, and proposed future actions based on the learnings.	G	5
	1	Total Marks		50

*Can be taken from the given sample activities/projects

Evaluation Criteria:

- **Depth of Analysis**: Quality and depth of reflections and analysis in project reports and case studies.
- Application of Concepts: Ability to apply course concepts to real-world problems and local contexts.
- Creativity: Innovative approaches and creative solutions proposed in projects and reflections.
- Presentation Skills: Clarity, coherence, and professionalism in the final presentation.

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Develop the ability to apply the principles of engineering ethics in their professional life.	К3
CO2	Develop the ability to exercise gender-sensitive practices in their professional lives	K4
СО3	Develop the ability to explore contemporary environmental issues and sustainable practices.	К5
CO4	Develop the ability to analyse the role of engineers in promoting sustainability and climate resilience.	K4
CO5	Develop interest and skills in addressing pertinent environmental and climate-related challenges through a sustainable engineering approach.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1						3	2	3	3	2		2
CO2		1				3	2	3	3	2		2
CO3						3	3	2	3	2		2
CO4		1				3	3	2	3	2		2
CO5						3	3	2	3	2		2

Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Ethics in Engineering Practice and Research	Caroline Whitbeck	Cambridge University Press & Assessment	2nd edition & August 2011			
2	Virtue Ethics and Professional Roles	Justin Oakley	Cambridge University Press & Assessment	November 2006			
3	Sustainability Science	Bert J. M. de Vries	Cambridge University Press & Assessment	2nd edition & December 2023			
4	Sustainable Engineering Principles and Practice	Bhavik R. Bakshi,	Cambridge University Press & Assessmen	2019			
5	Engineering Ethics	M Govindarajan, S Natarajan and V S Senthil Kumar	PHI Learning Private Ltd, New Delhi	2012			
6	Professional ethics and human values	RS Naagarazan	New age international (P) limited New Delhi	2006.			
7	Ethics in Engineering	Mike W Martin and Roland Schinzinger,	Tata McGraw Hill Publishing Company Pvt Ltd, New Delhi	4" edition, 2014			

Suggested Activities/Projects:

Module-II

- Write a reflection on a local environmental issue (e.g., plastic waste in Kerala backwaters or oceans) from different ethical perspectives (anthropocentric, biocentric, ecocentric).
- Write a life cycle analysis report of a common product used in Kerala (e.g., a coconut, bamboo or rubber-based product) and present findings on its sustainability.
- Create a sustainability report for a local business, assessing its environmental, social, and economic impacts
- Presentation on biodiversity in a nearby area (e.g., a local park, a wetland, mangroves, college campus etc) and propose conservation strategies to protect it.
- Develop a conservation plan for an endangered species found in Kerala.
- Analyze the green spaces in a local urban area and propose a plan to enhance urban ecology using native plants and sustainable design.
- Create a model of a sustainable urban landscape for a chosen locality in Kerala.

Module-III

- Study a local water body (e.g., a river or lake) for signs of pollution or natural flow disruption and suggest sustainable management and restoration practices.
- Analyse the effectiveness of water management in the college campus and propose improvements calculate the water footprint, how to reduce the footprint, how to increase supply through rainwater harvesting, and how to decrease the supply-demand ratio
- Implement a zero waste initiative on the college campus for one week and document the challenges and outcomes.
- Develop a waste audit report for the campus. Suggest a plan for a zero-waste approach.
- Create a circular economy model for a common product used in Kerala (e.g., coconut oil, cloth etc).
- Design a product or service based on circular economy and degrowth principles and present a business plan.
- Develop a plan to improve pedestrian and cycling infrastructure in a chosen locality in Kerala

Module-IV

- Evaluate the potential for installing solar panels on the college campus including cost-benefit analysis and feasibility study.
- Analyse the energy consumption patterns of the college campus and propose sustainable alternatives to reduce consumption What gadgets are being used? How can we reduce demand using energy-saving gadgets?
- Analyse a local infrastructure project for its climate resilience and suggest improvements.
- Analyse a specific environmental regulation in India (e.g., Coastal Regulation Zone) and its impact on local communities and ecosystems.
- Research and present a case study of a successful sustainable engineering project in Kerala/India (e.g., sustainable building design, water management project, infrastructure project).
- Research and present a case study of an unsustainable engineering project in Kerala/India highlighting design and implementation faults and possible corrections/alternatives (e.g., a housing complex with water logging, a water management project causing frequent floods, infrastructure project that affects surrounding landscapes or ecosystems).

DATA STRUCTURES LAB

(Common to CS/CA/CM/CD/CR/AI/AM/AD/CB/CN/CC/CU/CI/CG)

Course Code	PCCSL307	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:3:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	GYEST204	Course Type	Lab

Course Objectives:

1. To give practical experience for learners on implementing different linear and non linear data structures, and algorithms for searching and sorting.

Expt.	Experiments			
No.	Experiments			
1	Find the sum of two sparse polynomials using arrays			
2	Find the transpose of a sparse matrix and sum of two sparse matrices.			
3	Convert infix expression to postfix (or prefix) and then evaluate using stack,			
4	Implement Queue, DEQUEUE, and Circular Queue using arrays.			
5	Implement backward and forward navigation of visited web pages in a web browser (i.e.			
5	back and forward buttons) using doubly linked list operations.			
6	Implement addition and multiplication of polynomials using singly linked lists.			
7	Create a binary tree for a given simple arithmetic expression and find the prefix / postfix			
,	equivalent.			
8	Implement a dictionary of word-meaning pairs using binary search trees.			
9	Find the shortest distance of every cell from a landmine inside a maze.			
	We have three containers whose sizes are 10 litres, 7 litres, and 4 litres, respectively. The			
10	7-litre and 4-litre containers start out full of water, but the 10-litre container is initially			
10	empty. We are allowed one type of operation: pouring the contents of one container into			
	another, stopping only when the source container is empty or the destination container is			

	full. We want to know if there is a sequence of pourings that leaves exactly 2 litres in the 7
	or 4-litre container. Model this as a graph problem and solve.
11	Implement the find and replace feature in a text editor.
	Given an array of sorted items, implement an efficient algorithm to search for specific item
12	in the array.
13	Implement Bubble sort, Insertion Sort, Radix sort, Quick Sort, and Merge Sort and compare
15	the number of steps involved.
	The General post office wishes to give preferential treatment to its customers. They have
	identified the customer categories as Defence personnel, Differently abled, Senior citizen,
14	Ordinary. The customers are to be given preference in the decreasing order - Differently
	abled, Senior citizen, Defence personnel, Normal person. Generate the possible sequence
	of completion.
	Implement a spell checker using a hash table to store a dictionary of words for fast lookup.
15	Implement functions to check if a word is valid and to suggest corrections for misspelled
	words.
16	Simulation of a basic memory allocator and garbage collector using doubly linked list
	The CSE dept is organizing a tech fest with so many exciting events. By participating
	in an event, you can claim for activity points as stipulated by KTU. Each event i gives
17	you A[i] activity points where A is an array. If you are not allowed to participate in more
	than k events, what's the max number of points that you can earn?
	Merge K sorted lists into a single sorted list using a heap. Use a min-heap to keep track of
18	the smallest element from each list. Repeatedly extract the smallest element and insert the
	next element from the corresponding list into the heap until all lists are merged.

Course Assessment Method

(CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment)	Internal Examination	Total
5	25	20	50

End Semester Examination Marks (ESE):

Procedure/	Conduct of experiment/	Result with valid			
Preparatory	Execution of work/	inference/	Viva	Dered	T-4-1
work/Design/	troubleshooting/	Quality of	voce	Record	Total
Algorithm	Programming	Output			
10	15	10	10	5	50

• Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.

• Endorsement by External Examiner: The external examiner shall endorse the record

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Model a real world problem using suitable data structure and implement the solution.	К3
CO2	Compare efficiency of different data structures in terms of time and space complexity.	K4
CO3	Evaluate the time complexities of various searching and sorting algorithms.	К5
CO4	Differentiate static and dynamic data structures in terms of their advantages and application.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO- PO Mapping (Mapping of Course Outcomes with Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	3	3	3	3				3				3
CO2	3	3	3	3				3				3
CO3	3	3	3	3				3				3
CO4	3	3	3	3				3				3

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Fundamentals of Data Structures in C	Ellis Horowitz, Sartaj Sahni and Susan Anderson-Freed,	Universities Press,	2/e, 2007		
2	Introduction to Algorithms	Thomas H Cormen, Charles Leisesrson, Ronald L Rivest, Clifford Stein	PHI	3/e, 2009		

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Classic Data Structures	Samanta D.	Prentice Hall India.	2/e, 2018		
2	Data Structures and Algorithms	Aho A. V., J. E. Hopcroft and J. D. Ullman	Pearson Publication.	1/e, 2003		
3	Introduction to Data Structures with Applications	Tremblay J. P., P. G. Sorenson	Tata McGraw Hill.	2/e, 2017		
4	Theory and Problems of Data Structures	Lipschutz S.	Schaum's Series	2/e, 2014		

	Video Links (NPTEL, SWAYAM)				
Sl. No.	Link ID				
1	https://nptel.ac.in/courses/106102064				
2	https://ocw.mit.edu/courses/6-851-advanced-data-structures-spring-2012/				

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.

- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

• Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted

SEMESTER S3

DIGITAL LAB

(Common to CS/CM/AM/CN)

Course Code	PCCSL308	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:3:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Lab

Course Objectives:

- 1. To enable the learner to design and implement basic digital logic circuits using logic gates and ICs.
- 2. To familiarize digital system design using HDL.

(All HDL based experiments should be done using Verilog HDL. At Least three				
experiments of PART A & B together should be implemented on a breadboard .				
Use any open source circuit simulation software or web based logic simulator				
softwares for the rest of the experiments (refer to https://circuitverse.org,				
https://simulator.io, https://www.logiccircuit.org)				
Part A				
(All experiments in this part are mandatory. These experiments give an introduction to the digital design by familiarising the basic gates and combinational				
realisation.)				
Study of basic digital ICs and verification of Boolean theorems using digital logic gates.				
Familiarisation of the working of circuit simulation software.				
a. Realize the basic logic gates and analyze their waveforms				
b. Realize a given Boolean function using basic gates and verify thewaveform with the truth table.				

	Familiarisation of Verilog HDL - Modelling of the basic gates using				
	a. gate level modelling				
	b. behavioural modelling				
A3.	c. structural modelling				
	d. dataflow modelling				
	Realization of an SOP and its corresponding POS expression using NAND gates alone				
A4.	and NOR gates alone (to be do on breadboard and simulated using software)				
	Model a given Boolean function (SOP and POS) in Verilog using				
	a. continuous assignment with logical operators				
A5.	b. continuous assignment with conditional operators				
	c. using gate level primitives				
	Part B				
	(All experiments to be done using any circuit simulation softwares.)				
	Design and implement a combinational logic circuit for arbitrary functions (any two)				
B1.	a) Code converters				
	b) Half adder, full adder, half subtractor, full subtractor				
	c) Multiplexer, Demultiplexer, Encoder, Decoder				
	Design and implement combinational circuits using MSI devices: (any three)				
	1. 4-bit adder and subtractor using MSI device IC 7483.				
B2.	2. Parity generator / checker using MSI device IC 74180				
	3. Magnitude Comparator using MSI device IC 7485				
	4. Implement a boolean function using MUX IC				
B3.	Study of D flip flop and JK flip flops using ICs				
	To design and implement the following shift registers using D flip flops				
	(i) Serial in serial out				
B4.	(ii) Serial in parallel out				
	(iii) Parallel in serial out				
	(iv) Parallel in parallel out				
B5.	Design and implement an asynchronous counter - 3 bit up counter, 3-bit down counter, 3				
	bit up down counter with mode control, mod-N counter				
B6.	Design and implement a synchronous counter - 3 bit up counter, 3-bit down counter,				
	sequence generator.				

	PART C				
	using Verilog HDL				
	For the all the experiments in part C:				
	1. Write Verilog program code in the IDE/Software (Other open source or online				
	softwares such as Icarus Verilog / EDAplayground may be used)				
	2. Simulate the code using a test bench or by giving input values.				
	3. Synthesize the design and verify the waveforms				
	Model a 4:1 MUX, 1:4 DEMUX, 4 to 2 encoder, and 2 to 4 decoder and a 7-Segment				
	Display Decoder in Verilog using				
C1.	a. continuous assignment with logical operators				
	b. continuous assignment with conditional operators				
C2.	Design and synthesize the behavioural model for a D flip flop in Verilog HDL				
C3.	Design and synthesize the behavioural model for a synchronous counter in Verilog				
C4.	Design a Verilog HDL behavioral model to implement a finite-state machine - a serial				
U4.	bit sequence detector				

Course Assessment Method

(CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment)	Internal Examination	Total
5	25	20	50

End Semester Examination Marks (ESE):

Procedure/	Conduct of experiment/	Result with valid			
Preparatory	Execution of work/	inference/	Viva	Record	Total
work/Design/	troubleshooting/	Quality of	voce	Record	Totai
Algorithm	Algorithm Programming				
10	15	10	10	5	50

- Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.
- Endorsement by External Examiner: The external examiner shall endorse the record

Course Outcomes (COs)

At the end of the course students should be able to:

		Bloom's
	Course Outcome	Knowledge
		Level (KL)
CO1	Model and construct combinational logic circuits.	K3
CO2	Develop modular combinational circuits with MUX,DEMUX and decoder.	K3
CO3	Experiment with synchronous and asynchronous sequential circuits.	K3
CO4	Model and implement FSM.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO- PO Mapping (Mapping of Course Outcomes with Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1 1	PO12
CO1	3	3	3	3	3							3
CO2	3	3	3	3	3							3
CO3	3	3	3	3	3							3
CO4	3	3	3	3	3							3

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

		Text Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Introduction to Logic Circuits & Logic Design with Verilog	Brock J. LaMeres	Springer International Publishing	2/e, 2017
2	Digital Design and Computer Architecture - RISC-V Edition	Sarah L. Harris, David Harris	Morgan Kaufmann	1/e, 2022
3	Verilog HDL Synthesis: A Practical Primer	J Bhasker	Star Galaxy Publishing	1/e, 1998

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Digital Design with an Introduction to the Verilog HDL, VHDL, and System Verilog	M Morris Mano, Michael D Ciletti	Pearson	6/e, 2018				
2	Fundamentals of Digital Logic with Verilog Design	Stephen Brown, Zvonko Vranesic	McGrawHill	3/e, 2014				

	Video Links (NPTEL, SWAYAM)				
Sl. No.	Link ID				
1	https://nptel.ac.in/courses/117105080				
2	https://archive.nptel.ac.in/courses/108/103/108103179/				
3	https://www.youtube.com/watch?v=JU0RKPe7AhA (Introduction to CircuitVerse)				

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

- 1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)
 - Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
 - Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
 - Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
 - Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

• Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted

SEMESTER 4

ARTIFICIAL INTELLIGENCE & MACHINE LEARNING

SEMESTER S4

MATHEMATICS FOR COMPUTER AND INFORMATION SCIENCE-4

Course Code	GAMAT401	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	NIL	Course Type	Theory

(Group A)

Course Objectives:

1. To provide a comprehensive understanding of fundamental concepts of graph theory including paths, cycles, trees, graph algorithms, graph coloring and matrix representations, emphasizing their applications across various disciplines.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
1	 Introduction to Graphs - Basic definition, Application of graphs, finite and infinite graphs, Incidence and Degree, Isolated vertex, Pendant vertex and Null graph. Isomorphism, Sub graphs, Walks, Paths and circuits, Connected graphs, Disconnected graphs and components. [Text 1: Relevant topics from sections 1.1, 1.2, 1.3, 1.4, 1.5, 2.1, 2.2, 2.4, 2.5. Proofs of theorems 2.5, 2.7 are excluded.] 	9
2	 Euler graphs, Operations on Graphs, Hamiltonian paths and circuits, Travelling Salesman Problem, Connectivity, Edge connectivity, Vertex connectivity, Directed graphs, Types of directed graphs. [Text 1: Relevant topics from sections 2.6, 2.7, 2.8, 2.9, 2.10, 4.1, 4.2, 4.5, 9.1, 9.2. Proofs of theorems 4.6, 4.11, 4.12 are excluded.] 	9
3	Trees- properties, Pendant vertices, Distance and centres in a tree, Rooted and binary trees, Counting trees, Spanning trees, Prim's algorithm and Kruskal's	9

	algorithm, Dijkstra's shortest path algorithm, Floyd-Warshall shortest path algorithm.	
	[Text 1: Relevant topics from sections 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.10, 11.5. Proofs of theorems 3.10, 3.16 are excluded.]	
4	 Matrix representation of graphs- Adjacency matrix, Incidence Matrix, Circuit Matrix, Path Matrix, Coloring, Chromatic number, Chromatic polynomial, Greedy colouring algorithm. [Text 1: Relevant topics from sections 7.1, 7.3, 7.8, 7.9, 8.1, 8.3. Proofs of 	9
	theorems 7.4, 7.7, 7.8, 8.2, 8.3, 8.5, 8.6 are excluded.]	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Micro project	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the fundamental concepts of graph theory such as types of graphs, degree of a vertex, graph isomorphism, connectedness.	K2
CO2	Understand the concepts of Euler graphs, Hamiltonian graphs and connectivity.	K2
CO3	Apply Prim's and Kruskal's algorithms for finding minimum cost spanning tree and Dijkstra's and Floyd-Warshall algorithms for finding shortest paths.	К3
CO4	Illustrate various representations of graphs using matrices and apply vertex coloring in real life problems.	K3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	-	-	-	-	-	-	-	-	2
CO2	3	3	2	-	-	-	-	-	-	-	-	2
CO3	3	3	2	2	-	-	-	-	-	-	-	2
CO4	3	3	2	2	-	-	-	-	-	-	-	2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Graph Theory with Applications to Engineering and Computer Science	Narsingh Deo	Prentice Hall India Learning Private Limited	1st edition, 1979						

	Reference Books										
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year							
1	Introduction to Graph Theory 2e	Douglas B. West	Pearson Education India	2nd edition, 2015							
2	Introduction to Graph Theory	Robin J. Wilson	Longman Group Ltd.	5th edition, 2010							
3	Graph Theory with Applications	J.A. Bondy and U.S.R. Murty	Elsevier Science Publishing Co., Inc	1976							

	Video Links (NPTEL, SWAYAM)								
Module No.	Link ID								
1	https://onlinecourses.nptel.ac.in/noc22_ma10/preview								
2	https://onlinecourses.nptel.ac.in/noc22_ma10/preview								
3	https://onlinecourses.nptel.ac.in/noc21_cs48/preview								
4	https://onlinecourses.nptel.ac.in/noc21_cs48/preview								

SEMESTER S4

FUNDAMENTALS OF ARTIFICIAL INTELLIGENCE

(Common to CM/AM)

Course Code	PCCMT402	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- **1.** To lay a solid foundation of the important abstractions, techniques, and reasoning for intelligent systems.
- 2. To enable the learners to understand the basic principles of Planning.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
1	Introduction to Artificial Intelligence:-Introduction, Foundation and history of AI Agents and Environments; Theconcept of rationality; The nature of environments, Structure of agents.Problem solving Agents Well-defined problems and solutions, Formulatingproblems; Example problems- vacuum world, 8-puzzle, 8-queens.	8
2	Blind Search strategies:- Depth First Search, Breadth First Search, Iterative Deepening Search. Heuristic Search strategies - Heuristic functions, The effect of heuristic accuracy on performance; Generate and test, Greedy best first search, A* algorithm, Constraint satisfaction problems, Cryptarithmetic problems, Means-end analysis; Local search strategies - Simple Hill Climbing, Simulated Annealing; Adversarial search - Games, Optimal Decision in games, The minimax algorithm, Alpha–beta pruning.	12
3	Knowledge-Based Agents :- The Wumpus World, Logic, Propositional Logic, Reasoning Patterns in Propositional Logic, First order logic, Inference in first order logic, propositional vs. first order inference, unification & lifts forward chaining,	12

	Backward chaining.			
	Planning:-			
	Classical planning - Algorithms for Classical Planning, Forward state-space			
	search for planning, Backward search for planning, Planning as Boolean			
4	satisfiability, Heuristics for Planning, Domain-independent pruning, State			
	abstraction in planning, Hierarchical Planning, High-level actions, Searching			
	for primitive solutions, Searching for abstract solutions, Planning and Acting			
	in Nondeterministic Domains, Time, Schedules, and Resources.			

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome						
CO1	Explain how intelligent agents can solve problems.	K2					
CO2	Use the different types of search methods to solve various problems.	К3					
CO3	Apply knowledge representation and examine resolution in propositional logic and first order logic.	К3					
CO4	Choose a sequence of actions for intelligent agents to accomplish a task by applying appropriate planning strategies.	К3					

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	2	-	-	-	-	-	-	-	2
CO2	3	3	3	2	-	-	-	-	-	-	-	2
CO3	2	2	2	2	-	-	-	-	-	-	-	2
CO4	3	2	2	2	-	-	-	-	-	-	-	2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	AI – A Modern Approach	Stuart Russel, Peter Norvig	Pearson Education	4/e, 2021				
2	Artificial Intelligence	Kevin Knight, Elaine Rich, Shivashankar B. Nair	Tata McGraw-Hill	3/e, 2009				

Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Introduction to Artificial Intelligence and Expert Systems	Dan W. Patterson	Pearson Education	1/e, 2015		
2	Artificial Intelligence: Structures and Strategies for Complex Problem Solving	George F. Luger	Pearson Education	6/e, 2009		
3	Artificial Intelligence : Making a System Intelligent	Nilakshi Jain	Wiley	1/e, 2019		

	Video Links (NPTEL, SWAYAM)					
Module No.						
1	https://www.youtube.com/watch?v=X_Qt0U66aH0					
2	https://www.youtube.com/watch?v=te1K8on1Pk0					
3	https://www.youtube.com/watch?v=SEJhMO1IXZs					
4	https://www.youtube.com/watch?v=RFdZMGJHrTc					

SEMESTER S4

MACHINE LEARNING II

Course Code	PCAMT403	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCAMT302	Course Type	Theory

Course Objectives:

- 1. To introduce the learners the in depth theory of neural networks and their optimization.
- 2. To enable the learners to design real life solutions using unsupervised learning.

SYLLABUS

Module No.	Syllabus Description						
1	Introduction to Neural Networks:- Biological Neuron versus Artificial Neuron, The Perceptron Model, Notion of Bias and Activation Functions, Different Activation Functions (Sign Function, Sigmoid Function, Hyperbolic Tangent Function, ReLU Function, Leaky ReLU function, Softmax function). Architecture of Neural Networks:- Feedforward and Feedback Neural Networks, Single Layer Perceptron, Linear Separability, The Perceptron Learning Algorithm and its Convergence, The XOR Problem, Designing simple mathematical functions using Single Layer Perceptron.	8					
2	 Multilayer Neural Networks:- Multilayer Perceptron, Representational Capability, Universal Approximation Capability, Kolmogorov's Theorem, Size versus depth, MLP Representational Capability. Back Propagation Algorithm:- Back Propagation Learning Law, The Back Propagation Learning Algorithm (Derivation of the Algorithm is required), Issues in Back Propagation Learning (Vanishing and Exploding Gradient Problems, Local Minima and Saddle Points, Overfitting, Slow Convergence, Sensitivity to the selection of the Initial weights, Computational Cost) 	12					

	Methods to Rectify the Issues in Backpropagation :- Gradient Clipping,			
	Batch Normalization, Regularization, Dropout, Use of Adaptive Learning			
	Rate Methods (Back Propagation Algorithm with Momentum, Adaptive			
3	Gradient Descent Algorithm (ADAGRAD), Root Mean Square Propagation	10		
	(RMSProp), Adaptive Momentum Estimation (ADAM))			
	Weight Initialization Techniques:- Random Initialization methods, Non-			
	random Initialization methods			
	Unsupervised Learning Models:- Clustering, Similarity measures, Different			
	Types (Partitional Clustering, Hierarchical Clustering, Density Based			
4	Clustering, Model Based Clustering), K-means Clustering Algorithm,	10		
-	Hierarchical Agglomerative Clustering Algorithm, Expectation maximization	10		
	(EM) Algorithm, DBSCAN Algorithm.			
	Dimensionality reduction, Principal Component Analysis.			

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. 	60
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the fundamentals of Artificial Neural Networks.	K2
CO2	Illustrate how the Back Propagation Learning method can be used to train Perceptron models.	К3
СО3	Identify different issues in the Back Propagation Training Algorithm and design solutions to rectify these issues.	К3
CO4	Use Unsupervised Machine Learning Methods such as Clustering to solve real world problems.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping od Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	3	2								2
CO2	2	2	3	2								2
CO3	2	2	3	3								2
CO4	2	2	3	3								2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Neural Smithing - Supervised Learning in Feedforward Artificial Neural Networks	Russell D. Reed and Robert J. Marks II	MIT Press	1/e, 2014			
2	Neural Networks and Deep Learning	Charu C Agarwal	Springer	2/e, 2023			
3	Introduction to Machine Learning with Python: A Guide for Data Scientists	Andreas Muller, Sarah Guido	O' Reilly	1/e, 2016			

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Artificial Neural Networks	B. Yegnanarayana	PHI Learning Private Limited	1/e, 1999				
2	Applied Machine Learning	M. Gopal	Tata McGraw Hill	2/e, 2018				

	Video Links (NPTEL, SWAYAM)				
Sl. No.	Link ID				
1	Introduction to Neural Networks				
	https://youtu.be/xbYgKoG4x2g?si=6qYK55wDC18JrpV6				
2	Perceptron Convergence				
	https://youtu.be/tRG-OnnQ9g4?si=za8uY4Tc3Q23Ep4A				
3	Back Propagation Algorithm				
	https://youtu.be/nz3NYD73H6E?si=XYauYJbTUW2Q8pET				
4	Principal Component Analysis				
	https://youtu.be/H0HjNuNvFVI?si=Ee_e0VRDLmViDSFo				
5	Dimensionality Reduction				
	https://youtu.be/HnVYF6VQryU?si=46_e8bO4eiEPevU9				
6	Unsupervised Learning				
	https://youtu.be/NhimXdFenrg?si=WZoxnlT2zqj77Fwj				

SEMESTER S4

DATABASE SYSTEMS

(Common to CM/AM)

Course Code	PBCMT404	CIE Marks	60
Teaching Hours/Week (L: T:P: R)	4	ESE Marks	40
Credits	3:0:0:1	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To equip the students with a comprehensive understanding of fundamental DBMS concepts as well as the principles and applications of NoSQL databases
- 2. To enable students to design, implement, and manage both relational and NoSQL databases.

Module No.	Syllabus Description					
1	 Introduction to Databases:- Database System Concepts and Architecture - Data Models, Schemas and Instances; Three-Schema Architecture and Data Independence; Database Languages and Interfaces; Centralized and Client/Server Architectures for DBMSs. Conceptual Data Modelling and Database Design:- Data Modelling Using the Entity-Relationship Model - Entity Types, Entity Sets, Attributes, and Keys, Relationship Types, Relationship Sets, Roles, and Structural Constraints, Weak Entity Types; Refining the ER Design for the COMPANY Database. 	11				
2	The Relational Data Model and SQL:- The Relational Data Model and Relational Database Constraints-Relational Algebra and Relational Calculus - Structured Query Language (SQL)-Data Definition Language, Data Manipulation Language, Assertions, Triggers, views, Relational Database Design Using ER-to-Relational Mapping.	11				
3	Database Design Theory and Normalization :- Functional Dependencies- Basic definition- Normalization- First, Second and Third normal forms.	11				

SYLLABUS

	Transaction Management :- Transaction Processing - Introduction,						
	problems and failures in transaction, Desirable properties of transaction,						
	Characterizing schedules based on recoverability and serializability;						
	Concurrency Control with Two-Phase Locking Techniques- Database						
	Recovery management: Deferred update-immediate update- shadow paging.						
	Introduction to NoSQL Concepts :- Types of NoSQL databases; CAP						
4	4 Theorem; BASE properties; Use Cases and limitations of NoSQL.						
•	SQL Architectural Patterns :- Key value Stores; Graph Stores; Column	11					
	Family stores and Document Stores.						

Suggestions on Project Topics

The students should identify a suitable project topic based on the concepts discussed in the syllabus and implement using the tools such as MySQL, Oracle, SQL Server etc. (for relational databases) or FireBase, MongoDB etc. (for NoSQL databases). The UI part (if applicable) may be developed using any programming language such as JAVA or Python. A few sample project topics are given below.

1. Design and implement a normalized database schema for the following requirement.

A library wants to maintain the record of books, members, book issue, book return, and fines collected for late returns, in a database. The database can be loaded with book information. Students can register with the library to be a member. Books can be issued to students with a valid library membership. A student can keep an issued book with him/her for a maximum period of two weeks from the date of issue, beyond which a fine will be charged. Fine is calculated based on the delay in days of return. For 0-7 days: Rs 10, For 7 – 30 days: Rs 100, and for days above 30 days: Rs 10 will be charged per day.

- 2. Design and implement an e-commerce product catalogue using a NoSQL database with the following CRUD operations:
 - *Add new products to the catalogue.*
 - Update product details (e.g., price, stock quantity).
 - Delete products from the catalogue.
 - *Add / Delete categories and Update category details.*
 - *Add / Delete suppliers and Update Supplier details.*

Course Assessment Method (CIE: 60 marks, ESE: 40 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Project	Internal Ex-1	Internal Ex-2	Total
5	30	12.5	12.5	60

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	• 2 questions will be given from each module, out	
module.	of which 1 question should be answered. Each	
• Total of 8 Questions,	question can have a maximum of 2 subdivisions.	40
each carrying 2 marks	Each question carries 6 marks.	
(8x2 =16 marks)	(4x6 = 24 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Summarize and exemplify the fundamental nature and characteristics of database systems	К2
CO2	Model and design solutions for efficiently representing data using the relational model or non-relational model	К3
CO3	Discuss and compare the aspects of Concurrency Control and Recovery in Database systems	К3
CO4	Construct and execute basic to advanced SQL queries to effectively retrieve, filter, and manipulate data from relational databases.	К3
CO5	Demonstrate a comprehensive understanding of NoSQL database concepts	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3	3	3					2	2	3
CO3	3	3	3	3	3							3
CO4	3	3	3	3	3							3
CO5	3	3	3	3	3							3

	Text Books								
Sl.	Title of the Book	Name of the	Name of the	Edition					
No	The of the book	Author/s	Publisher	and Year					
1	Fundamentals of Database Systems [Module	Ramez Elmasri,	Pearson	7/e, 2017					
	1,2,3,4]	Shamkant Navathe	rearson						
	Making Sansa of NoSOL : A guida for managara	Dan							
2	Making Sense of NoSQL: A guide for managers and the rest of us [Module 4]	McCreary, Ann	Manning	1/e, 2014					
	and the rest of us [wodule 4]	Kelly							

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Database System Concepts	Sliberschatz A., H. F. Korth, S. Sudarshan	McGraw Hill	7/e, 2011				
2	Beginning Database Design Solutions	Rod Stephens	Wiley	2/e, 2023				
3	NoSQL Distilled	Pramod J. Sadalage, Martin Fowler	Addison- Wesley	1/e, 2012				
4	NoSQL Data Models: Trends and Challenges (Computer Engineering: Databases and Big Data), - Vol 1	Olivier Pivert	Wiley	1/e, 2018				

	Video Links (NPTEL, SWAYAM)						
Module No.							
1	https://onlinecourses.nptel.ac.in/noc21_cs04/preview						
2	https://onlinecourses.nptel.ac.in/noc21_cs04/preview						
3	https://onlinecourses.nptel.ac.in/noc21_cs04/preview						
4	https://archive.nptel.ac.in/courses/106/104/106104135/						

PBL Course Elements

L: Lecture	R: Project (1 Hr.), 2 Faculty Members					
(3 Hrs.)	Tutorial	Practical	Presentation			
Lecture delivery	Project identification	Simulation/ Laboratory Work/ Workshops	Presentation (Progress and Final Presentations)			
Group discussion	Project Analysis	Data Collection	Evaluation			
Question answer Sessions/ Brainstorming Sessions	Analytical thinking and self-learning	Testing	Project Milestone Reviews, Feedback, Project reformation (If required)			
Guest Speakers (Industry Experts)	Case Study/ Field Survey Report	Prototyping	Poster Presentation/ Video Presentation: Students present their results in a 2 to 5 minutes video			

Assessment and Evaluation for Project Activity

Sl. No	Evaluation for				
1	Project Planning and Proposal	5			
2	Contribution in Progress Presentations and Question Answer Sessions	4			
3	Involvement in the project work and Team Work	3			
4	Execution and Implementation	10			
5	Final Presentations	5			
6	Project Quality, Innovation and Creativity	3			
	Total	30			

1. Project Planning and Proposal (5 Marks)

- Clarity and feasibility of the project plan
- Research and background understanding
- Defined objectives and methodology

2. Contribution in Progress Presentation and Question Answer Sessions (4 Marks)

- Individual contribution to the presentation
- Effectiveness in answering questions and handling feedback

3. Involvement in the Project Work and Team Work (3 Marks)

- Active participation and individual contribution
- Teamwork and collaboration

4. Execution and Implementation (10 Marks)

- Adherence to the project timeline and milestones
- Application of theoretical knowledge and problem-solving
- Final Result

5. Final Presentation (5 Marks)

- Quality and clarity of the overall presentation
- Individual contribution to the presentation
- Effectiveness in answering questions

6. Project Quality, Innovation, and Creativity (3 Marks)

- Overall quality and technical excellence of the project
- Innovation and originality in the project

Creativity in solutions and approaches

SEMESTER S4

SOFTWARE ENGINEERING

(Common to CS/CD/CM/CR/CA/AD/AM/CB/CN/CU/CI)	1
--	---

Course Code	PECST411	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- To Provide fundamental knowledge in the Software Development Process including Software Development, Object Oriented Design, Project Management concepts and technology trends.
- 2. To enable the learners to apply state of the art industry practices in Software development.

Module No.	Syllabus Description	Contact Hours
1	 Introduction to Software Engineering and Process Models - Software engineering, Software characteristics and types, Layers of Software Engineering-Process, Methods, Tools and Quality focus. Software Process models – Waterfall, Prototype, Spiral, Incremental, Agile model – Values and Principles. Requirement engineering - Functional, Non-functional, System and User requirements. Requirement elicitation techniques, Requirement validation, Feasibility analysis and its types, SRS document characteristics and its structure. <i>Case study:</i> SRS for College Library Management Software 	9
2	Software design - Software architecture and its importance, Software architecture patterns: Component and Connector, Layered, Repository, Client- Server, Publish-Subscribe, Functional independence – Coupling and Cohesion <i>Case study:</i> Ariane launch failure Object Oriented Software Design - UML diagrams and relationships– Static and dynamic models, Class diagram, State diagram, Use case diagram, Sequence diagram <i>Case Studies</i> : Voice mail system, ATM Example	9

SYLLABUS

	Software pattern - Model View Controller, Creational Design Pattern types –	
	Factory method, Abstract Factory method, Singleton method, Prototype	
	method, Builder method. Structural Design Pattern and its types - Adapter,	
	Bridge, Proxy, Composite, Decorator, Façade, Flyweight. Behavioral Design	
	Pattern	
	Coding, Testing and Maintenance:	
	Coding guidelines - Code review, Code walkthrough and Code inspection,	
	Code debugging and its methods.	
	Testing - Unit testing , Integration testing, System testing and its types, Black	
	box testing and White box testing, Regression testing	
3	Overview of DevOps and Code Management - Code management, DevOps	9
	automation, Continuous Integration, Delivery, and Deployment (CI/CD/CD),	
	<i>Case study</i> – Netflix.	
	Software maintenance and its types- Adaptive, Preventive, Corrective and	
	Perfective maintenance. Boehm's maintenance models (both legacy and non-	
	legacy)	
	Software Project Management - Project size metrics – LOC, Function points	
	and Object points. Cost estimation using Basic COCOMO.	
	Risk management: Risk and its types, Risk monitoring and management model	
	Software Project Management - Planning, Staffing, Organizational	
	structures, Scheduling using Gantt chart. Software Configuration Management	
4	and its phases, Software Quality Management - ISO 9000, CMM, Six Sigma	9
	for software engineering.	
	Cloud-based Software -Virtualisation and containers, Everything as a service	
	(IaaS, PaaS), Software as a service. Microservices Architecture -	
	Microservices, Microservices architecture, Microservice deployment.	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	endance Assignment/ Microproject Internal (Written)		Internal Examination- 2 (Written)	Total	
5	15	10	10	40	

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Plan the system requirements and recommend a suitable software process model	К3
CO2	Model various software patterns based on system requirements	K3
CO3	Apply testing and maintenance strategies on the developed software product to enhance quality	К3
CO4	Develop a software product based on cost, schedule and risk constraints	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping od Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3									3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

Text Books	

Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Software Engineering: A practitioner's approach	Roger S. Pressman	McGraw-Hill	8/e, 2014
2	Software Engineering	Ian Sommerville	Addison-Wesley	10/e, 2015
3	Design Patterns, Elements of Reusable Object Oriented Software	Erich Gamma,Richard Helm, Ralph Johnson,John Vlissides	Pearson Education Addison-Wesley	1/e, 2009

	Reference Books						
Sl. No	o Title of the Book Name of the Author/s		Name of the Publisher	Edition and Year			
1	Pankaj Jalote's Software Engineering: With Open Source and GenAI	Pankaj Jalote Wiley India		1/e, 2024			
2	Software Engineering: A Primer	Waman S Jawadekar	Tata McGraw-Hill	1/e, 2008			
3	Object-Oriented Modeling and Design with UML	Michael Blaha, James Rumbaugh	Pearson Education.	2/e, 2007			
4	Software Engineering Foundations : A Software Science Perspective	Yingux Wang	Auerbach Publications	1/e, 2008			
5	Object-Oriented Design and Patterns	Cay Horstmann	Wiley India	2/e, 2005			
6	Engineering Software Products: An Introduction to Modern Software Engineering	Ian Sommerville	Pearson Education	1/e, 2020			

	Video Links (NPTEL, SWAYAM)			
Module No.	Link ID			
1	https://www.youtube.com/watch?v=Z6f9ckEElsU			
2	https://www.youtube.com/watch?v=1xUz1fp23TQ			
3	http://digimat.in/nptel/courses/video/106105150/L01.html			
4	https://www.youtube.com/watch?v=v7KtPLhSMkU			

PATTERN RECOGNITION

(Common to CS/CM/CA/AM/CN/CI)

Course Code	PECST412	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	GAMAT301, PCCST303	Course Type	Theory

Course Objectives:

- 1. To introduce a foundational understanding of the fundamental principles, theories, and methods used in pattern recognition.
- 2. To develop practical skills in implementing pattern recognition algorithms and techniques.

Module No.	Syllabus Description	Contact Hours		
	Foundations of Pattern Recognition: -			
	Introduction to Pattern Recognition - Definitions and applications of pattern			
	recognition, Overview of pattern recognition systems (Text 2, Chapter 1)			
1	Statistical Pattern Recognition - Bayes decision theory, Parametric methods:	9		
	Maximum likelihood estimation, Bayesian estimation (Text 1, Chapters 1, 2)			
	Non-Parametric Methods - k-Nearest neighbors, Parzen windows (Text 2,			
	Chapter 4)			
	Feature Extraction and Selection :-			
	Feature Extraction - Importance of feature extraction, Techniques for feature			
	extraction: PCA, LDA, Feature extraction in image and signal processing (Text			
2	1, Chapter 3)			
	Feature Selection - Importance of feature selection, Techniques for feature			
	selection: filter methods, wrapper methods, Feature selection criteria (Text 2,			
	Chapter 6)			
	Supervised and Unsupervised Learning			
	Supervised Learning - Basics of supervised learning, Linear classifiers:			
3	perceptron, logistic regression, Support vector machines (SVM) (Text 1,	9		
	Chapter 4)			
	Unsupervised Learning - Basics of unsupervised learning, Clustering			

SYLLABUS

	techniques: k-means, hierarchical clustering, Gaussian Mixture Models (GMM)	
	(Text 1, Chapter 9)	
	Advanced Topics and Applications :-	
	Hidden Markov Models (HMMs) - Basics of HMMs, HMM for sequence	
	modeling, Applications of HMMs in speech and language processing (Text 1,	
	Chapter 13)	
4	Ensemble Methods - Basics of ensemble methods, Bagging, boosting, and	9
	random forests, Applications and case studies (Text 1, Chapter 14)	
	Applications and Case Studies - Real-world applications of pattern recognition,	
	Case studies in image and speech recognition, Future trends in pattern	
	recognition (Text 2, Chapter 10)	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome					
CO1	Understand and Explain fundamental Concepts of Pattern Recognition:	K2				
CO2	Apply Classification and Clustering Techniques:	K3				
СО3	Implement Feature Extraction and Dimensionality Reduction Techniques	К3				
CO4	Apply Statistical and Non-Parametric Methods for Pattern Recognition	К3				
C05	Develop Solutions for Real-World Pattern Recognition Problems and Analyze Case Studies:	К3				

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3		3							3
CO3	3	3	3		3							3
CO4	3	3	3		3							3
CO5	3	3	3			3		3				3

	Text Books										
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year							
1	Pattern Recognition and Machine Learning	Christopher M. Bishop	SPRINGER	1/e, 2009							
2	Pattern Classification	Richard Duda, Peter Hart, David Stork	Wiley	2/e, 2007							

Reference Books									
Sl. NoTitle of the BookName of theName of the									

		Author/s	Publisher	and Year
1	The Nature of Statistical Learning Theory	Vladimir Vapnik	Springer-Verlag New York Inc.	2/e, 2010
2	The Elements of Statistical Learning	Jerome Friedman, Robert Tibshirani, Trevor Hastie	Springer-Verlag New York Inc	9/e, 2017
3	Pattern Recognition	S.Theodoridis and K.Koutroumbas	Academic Press	4/e, 2009

	Video Links (NPTEL, SWAYAM)									
Module No.	Link ID									
1	https://archive.nptel.ac.in/courses/117/105/117105101/									
2	https://archive.nptel.ac.in/courses/117/105/117105101/									
3	https://archive.nptel.ac.in/courses/117/105/117105101/									
4	https://archive.nptel.ac.in/courses/117/105/117105101/									

SEMESTER S4

FUNCTIONAL PROGRAMMING

Course Code	PECST413	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	GYEST204	Course Type	Theory

(Common to CS/CD/CM/CR/CA/AD/AM/CB/CN/CU/CG)

Course Objectives:

- **1.** To enable the learner write programs in a functional style and reason formally about functional programs;
- 2. To give the concepts of polymorphism and higher-order functions in Haskell to solve the

Module No.	Syllabus Description	Contact Hours
1	Introducing Functional Programming; Getting Started with Haskell and GHCi; Basic Types and Definitions; Designing and Writing Programs; Data Types, Tuples and Lists. [Text Ch. 1, 2, 3, 4, 5]	9
2	Programming with Lists; Defining Functions over Lists; Playing the Game: I/O in Haskell; Reasoning about Programs; [Text Ch. 6, 7, 8, 9]	9
3	Generalization: Patterns of Computation; Higher-order Functions; Developing Higher-order Programs; Overloading, Type Classes and Type Checking. [Text Ch. 10 11, 12, 13]	9
4	Algebraic Types; Case Study - Huffman Codes; Abstract Data Types; Lazy Programming; Time and Space Behaviour. [Text Ch. 15, 16, 17, 20]	9

SYLLABUS

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total	
5	15	10	10	40	

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Write computer programs in a functional style.	К2
CO2	Reason formally about functional programs and develop programs using lists.	К3
CO3	Use patterns of computation and higher-order functions.	К3
CO4	Reason informally about the time and space complexity of programs.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping od Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2			3							3
CO2	3	3	3		3							3
CO3	3	3	3		3							3
CO4	3	3	3		3							3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books				
Sl. No	Title of the BookName of the Author/s		Name of the Publisher	Edition and Year	
1	HASKELL : The Craft of Functional Programming	Simon Thompson	Addison Wesley	3/e, 2023	

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Thinking Functionally with Haskell	Richard Bird	Cambridge University Press	1/e, 2015		
2	Programming in Haskell	Graham Hutton	Cambridge University Press	2/e, 2023		
3	Real World Haskell	Bryan O'Sullivan, John Goerzen, Donald Bruce Stewart	O'Reilly	1/e, 2008		

	Video Links (NPTEL, SWAYAM)				
Sl. No.	SI. No. Link ID				
1	https://archive.nptel.ac.in/courses/106/106/106106137/				

SEMESTER S4

CODING THEORY

(Common to CS/CM/AM/CI)

Course Code	PECST414	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To introduce students to some of the classical methods in coding theory
- 2. To give the concept of code construction through the mathematical foundations and examples.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
1	Binary block codes, Minimum distance, Error-detecting capability and error- correcting capability.Introduction to linear block codes, generator matrix and parity check matrix.Properties of linear block codes: Syndrome, error detection. Distance properties of linear block codes. Single parity check codes, Hamming codes, Reed Muller codes	9
2	Cyclic Codes : Generator and Parity-Check Matrices of Cyclic Codes.Encoding of Cyclic Codes, Syndrome Computation and Error Detection, Decoding of Cyclic Codes,Cyclic Hamming Codes, Shortened Cyclic Codes	9
3	Convolutional codes: Encoding, state diagram, trellis diagram, Classification, realization, distance properties. Viterbi algorithm, BCJR algorithm. Performance bounds for convolutional codes	9
4	Turbo codes: Turbo decoding,Distance properties of turbo codes, Convergence of turbo codes. Automatic repeat request schemes. Applications of linear codes	9

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A Part B		Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3	
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Construct the encoder and decoder of linear block codes	К3
CO2	Understand the concept of error correction coding	K2
CO3	Understand the implementation of cyclic codes	К2
CO4	Apply Viterbi algorithm for decoding convolutional codes	К3
CO5	Experiment with turbo codes using iterative map and BCJR algorithm	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									2
CO2	3	3	3	2								2
CO3	3	3	3	2								2
CO4	3	3	3									2
CO5	3	3	3	2								

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

		Text Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Error Control Coding	Shu Lin and Daniel J. Costello, Jr.	PHI	2/e, 2004
2	Error Correction Coding	Todd K. Moon	Wiley	1/e, 2006

	Reference Books					
Sl. No	Title of the Book Name of the Aut		Name of the Publisher	Edition and Year		
1	Coding Theory: Algorithms, Architectures and Applications	Andre Neubauer, Jurgen Freudenberger, Volker Kuhn	Wiley	1/e, 2007		
2	The Theory of Error-Correcting Codes	F. J. MacWilliams, N. J. A. Sloane	North-Holland, Amsterdam	1/e, 1977		
3	Algebraic Codes for Data Transmission	R. E. Blahut	Cambridge University Press	1/e, 2003		
4	Fundamentals of Error- Correcting Codes	Cary W. Huffman, Vera Pless	Cambridge University Press	1/e, 2003		

	Video Links (NPTEL, SWAYAM)				
Mod. No.	Link ID				
1	https://archive.nptel.ac.in/courses/108/104/108104092/				
2	https://nptel.ac.in/courses/108102117				
3	https://archive.nptel.ac.in/courses/108/104/108104092/				
4	https://archive.nptel.ac.in/courses/108/104/108104092/				

SEMESTER S4

SIGNALS AND SYSTEMS

(Common to CS/CD/CM/CA/AM/CB/CN/CU/CI)

Course Code	PECST416	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To teach the concept of a Discrete Time (DT) signal
- **2.** To enable the learner to analyze the spectral information of any DT signal and its transformed version.
- **3.** To provide the learner the concepts of a DT system, how it behaves to an arbitrary input, and also to analyze the behaviour of a given DT system based on z-transform

Module No.	Syllabus Description	Contact Hours
	1D Signals - A general introduction to real time signals - CT and DT signals,	
	Sinusoids, Spectrum representation, Sampling and Aliasing (Concept only),	
	Analog frequency and Digital frequency.	
	Elementary sequences- Real Sinusoidal Sequences, Complex Exponential	
	Sequences Unit impulse, step and ramp sequences, Representation of discrete	
	time signals- (Graphical representation, Functional representation, Sequence	
	representation)	
	Properties of DT Signals - Even and Odd, Periodic and non periodic signal,	
	Energy and Power signals. Periodicity and Symmetry property of DT signals,	
1	support of sequences, Bounded Sequences.	8
	Operations on Signals - Time shifting (Translation), Time Reversal	
	(Reflection), Time scaling - Upsampling and downsampling	
	DTFS - Determining the Fourier-Series Representation of a Sequence,	
	Properties of Discrete-Time Fourier Series - Linearity, Translation (Time	
	Shifting), Modulation (Frequency Shifting), Reflection (Time Reversal),	
	Conjugation, Duality, Multiplication, Parseval's Relation, Even/Odd	
	symmetry, Real sequence.	
	(Practice of Visualization of a discrete time signal and operations on the DT	

	signal using python. Demonstration of sampling and reconstruction using	
	Python/Matlab.)	
2	Discrete-Time Fourier Transform for Aperiodic Sequences - Properties of the Discrete-Time Fourier Transform (Periodicity, Linearity, Translation (Time Shifting), Modulation (Frequency-Domain Shifting), Conjugation, Time Reversal, Convolution, Multiplication, Frequency-Domain Differentiation, Differencing, Parseval's theorem, Even/Odd symmetry, real sequences) DTFT of periodic sequences - Frequency Spectra of Sequences, Bandwidth of Sequences, Energy density spectra, Characterizing LTI Systems Using the Fourier Transform.	10
3	Discrete time systems - Block diagram representation and mathematical representation of discrete-time systems-Some common elements of Discrete-time systems (adder, constant multiplier, signal multiplier, unit delay, unit advance), Recursive DT systems and non recursive discrete time systems, Relaxed system, Linearity and time invariance property of a DT system. Discrete time LTI systems - Discrete time convolution, Properties of Convolution, Characterizing LTI Systems and Convolution - Impulse response of an LTI system, Difference equation, Properties of an LTI system - Causality, Memory, Invertibility, BIBO Stability, Eigen Sequences/ eigen functions for discrete-Time LTI Systems.	9
4	 Z transform - motivation for z transform, Relationship Between z Transform and Discrete-Time Fourier Transform, Region of Convergence for the z Transform. Properties of z transform - Translation (Time Shifting), Complex Modulation (z-Domain Scaling), Conjugation, Time Reversal, Upsampling (Time Expansion, Downsampling, Convolution, z-Domain Differentiation, Differencing, Initial and Final Value Theorems Determination of the Inverse z Transform LTI systems and difference equations, Characterizing LTI systems using z transform, Transfer function of an LTI system. Solving Difference Equations Using the Unilateral z Transform Block Diagram Representation of Discrete-Time LTI Systems, Interconnection of LTI systems. 	9

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Demonstrate the concept and different types of DT signals and the effect of different operations on the signals.	К2
CO2	Explain how DTFS can be used to represent a periodic DT signal.	K2
CO3	Apply the concept of DTFT for an aperiodic signal to determine the frequency spectrum.	К3
CO4	Utilize the properties of a DT system based on its impulse response and z transform.	К3
CO5	Identify the response of a DT LTI system to an arbitrary input sequence.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3	3								3
CO3	3	3	2	2								3
CO4	3	3	3	3								3
CO5	3	3	3	3								3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

		Text Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Signals and Systems	Michael D. Adams	University of Victoria, British Columbia, Canada	3/e 2020
2	Signals and systems	Barry Van Veen, Simon Haykins	Wiley	2/e, 2007
3	Signals and systems	A Nagoor Khani	McGraw Hill	2/e, 2022

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Fundamentals of Signals and Systems Using the Web and MATLAB	Edward W. Kamen,	Pearson	3/e, 2014				

	Video Links (NPTEL, SWAYAM)				
Sl. No.	Link ID				
1	https://archive.nptel.ac.in/courses/108/104/108104100/				
2	https://archive.nptel.ac.in/courses/108/106/108106163/				

SEMESTER S4

SOFT COMPUTING

Course Code	PECST417	CIE Marks	40
Teaching Hours/Week (L:T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

(Common to CS/CD/CM/CR/CA/AD/AI/AM/CB/CN/CI)

Course Objectives:

- **1.** To give exposure on soft computing, various types of soft computing techniques, and applications of soft computing
- **2.** To impart solid foundations on Neural Networks, its architecture, functions and various algorithms involved, Fuzzy Logic, various fuzzy systems and their functions, and Genetic algorithms, its applications and advances.

Module No.	Syllabus Description	Contact Hours
	Introduction to Soft Computing. Difference between Hard Computing & Soft	
	Computing. Applications of Soft Computing. Artificial Neurons Vs Biological	
	Neurons. Basic models of artificial neural networks - Connections, Learning,	
1	Activation Functions. McCulloch and Pitts Neuron. Hebb network, Perceptron	10
	Networks- Learning rule, Training and testing algorithm. Adaptive Linear	
	Neuron- Architecture, Training and testing algorithm.	
	Fuzzy logic, Fuzzy sets - Properties, Fuzzy membership functions, Features	
	of Fuzzy membership functions. operations on fuzzy set. Linguistic variables,	
2	Linguistic hedges Fuzzy Relations, Fuzy If-Then Rules, Fuzzification,	9
	Defuzzification- Lamda cuts, Defuzzification methods. Fuzzy Inference	
	mechanism - Mamdani and Sugeno types.	
	Evolutionary Computing, Terminologies of Evolutionary Computing,	
3	Concepts of genetic algorithm. Operators in genetic algorithm - coding,	8
	selection, cross over, mutation. Stopping condition for genetic algorithm.	

	Multi-objective optimization problem. Principles of Multi- objective							
	optimization, Dominance and pareto-optimality. Optimality conditions.							
4	Collective Systems, Biological Self-Organization, Particle Swarm	9						
	Optimization, Ant Colony Optimization, Swarm Robotics.							

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance Assignmen Microproje		Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out of	
• Total of 8 Questions, each	which 1 question should be answered.	5 0
carrying 3 marks	• Each question can have a maximum of 3 subdivisions.	60
	(4x9 = 36 marks)	
(8x3 =24 marks)		

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Describe the techniques used in soft computing and outline the fundamental models of artificial neural networks	К2
CO2	Solve practical problems using neural networks	К3
CO3	Illustrate the operations, model, and applications of fuzzy logic.	К3
CO4	Illustrate the concepts of evolutionary algorithms such as Genetic Algorithm	К3
CO5	Describe the concepts of multi-objective optimization models and collective systems.	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	2	2								3
CO3	3	3	3	2								3
CO4	3	3	2	2								3
CO5	3	3	3									3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Principles of Soft Computing	S.N.Sivanandam, S.N. Deepa	John Wiley & Sons.	3/e, 2018			
2	Multi-objective Optimization using Evolutionary Algorithms	Kalyanmoy Deb,	John Wiley & Sons	1/e, 2009			
3	Computational intelligence: synergies of fuzzy logic, neural networks and evolutionary computing.	Siddique N, Adeli H.	John Wiley & Sons	1/e, 2013			
4	Bio-inspired artificial intelligence: theories, methods, and technologies.	Floreano D, Mattiussi C.	MIT press; 2008 Aug 22.	1/e, 2023			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Fuzzy Logic with Engineering Applications	Timothy J Ross,	John Wiley & Sons,	3/e, 2011			
2	Neural Networks, Fuzzy Logic & Genetic Algorithms Synthesis and Applications	T.S.Rajasekaran, G.A.Vijaylakshmi Pai	Prentice-Hall India	1/e, 2003			
3	Neural Networks- A Comprehensive Foundation	Simon Haykin	Pearson Education	2/e, 1997			
4	Fuzzy Set Theory & Its Applications	Zimmermann H. J,	Allied Publishers Ltd.	4/e, 2001			

	Video Links (NPTEL, SWAYAM)
Sl. No.	Link ID
1	https://archive.nptel.ac.in/courses/106/105/106105173/

SEMESTER S4

INTRODUCTION TO THEORY OF COMPUTATION

Course Code	PEAIT419	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCST205	Course Type	Theory

(Common to AI/CR/AM)

Course Objectives:

- 1. To discuss the basic concepts and terminologies related to the theory of computation and to learn and apply the principles of formal languages, grammars, and automata theory.
- 2. To explore Context-Free Languages and Pushdown Automata
- **3.** To discuss the Chomsky classification of formal languages with a discussion on grammar and automata for regular, context-free, context-sensitive, and unrestricted languages.
- **4.** To discuss the Turing machines' role in defining computability and to explore the limits of computation.

Module No.	Syllabus Description	Contact Hours
1	Basic concepts: Alphabet, Strings, Languages, Grammar, Automata Deterministic Finite Automata/Accepter (DFA), Language of a DFA, Regular languages, Nondeterministic Finite Automata/Accepter (NFA), NFA with epsilon transitions, Language of an NFA, eliminating epsilon transitions (Proof not expected), Equivalence of NFAs and DFAs (Proof not expected) - The Subset Construction. DFA State Minimization, Applications of finite automata.	9
2	Regular expression, Language of a Regular Expression, Equivalence with finite automata (Proof not expected) - Converting FA to Regular Expressions, Converting Regular Expressions to FA, Regular grammar – examples. Closure Properties of Regular Languages (Proof not expected), Pumping Lemma for Regular Languages (Proof not expected), Pumping Lemma as a tool to prove nonregularity of languages. Context Free Language (CFL) and Context-Free Grammar (CFG), Designing CFGs for CFLs, Leftmost and Rightmost Derivations, Parse Trees, Ambiguity in CFGs and CFLs	9
3	Simplification of Context-Free Grammars - Eliminating useless symbols and productions, Eliminating epsilon productions, Eliminating unit productions, Chomsky Normal Form (CNF), Converting CFGs into CNF, Greibach Normal Form (definition only). Pushdown Automata (PDA), Language of a PDA, DPDA and NPDA, Designing PDAs for CFLs. Equivalence NPDAs and CFGs (Proof not expected) Pumping Lemma for Context-Free Languages (Proof not expected), Pumping Lemma as a tool to identify Non-Context-Free Languages. Closure Properties of CFLs (Proof not expected), Context Sensitive Grammar and Languages (introduction only)	9
4	Turing Machines (TMs) - Turing Machines as language acceptors, Language of a TM, Turing Machines as transducers, Nondeterministic Turing Machines (definition only), Recursive and Recursively Enumerable languages, Unrestricted Grammar (definition only), Chomsky hierarchy, Linear Bounded Automaton as a restricted TM (introduction only). Church-Turing thesis, Encoding of TMs, Universal Turing Machine, Existence of Languages that are not Recursively Enumerable, and Recursive but not Recursively Enumerable, Decidable and Undecidable Problems, The TM Halting Problem.	9

Course Assessment Method (CIE: 40 marks, ESE: 60 marks) Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome						
CO1	Build DFAs and NFAs, summarize the principles of regular languages and grammars, demonstrate the ability to minimize a DFA, and identify	К3					
CO2	the practical applications of FAs. Choose a regular expression for a regular language, identify non-regular	К3					
	languages, and design grammars for context-free languages.	N3					
CO3	Simplify context-free grammars, design pushdown automata, and identify and analyze context-free and non-context-free languages.	К3					
CO4	Construct a Turing machines, identify the class of a formal language, apply reduction, and use the halting problem to demonstrate the boundaries of computability.	К3					

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2								2
CO2	3	3	3	2								2
CO3	3	3	3	2								2
CO4	3	3	3	3								2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

Text Books									
Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
An Introduction to Formal Languages and Automata	Peter Linz and Susan H. Rodger	Jones and Bartlett Publishers, Inc	7/e, 2022						
Introduction to Automata Theory Languages And Computation	John E.Hopcroft, Rajeev Motwani, Jeffrey D.Ullman	Pearson	3/e, 2015						
	An Introduction to Formal Languages and Automata Introduction to Automata Theory	Title of the BookName of the Author/sAn Introduction to Formal Languages and AutomataPeter Linz and Susan H. RodgerIntroduction to Automata Theory Languages And ComputationJohn E.Hopcroft, Rajeev Motwani,	Title of the BookName of the Author/sName of the PublisherAn Introduction to Formal Languages and AutomataPeter Linz and Susan H. RodgerJones and BartlettIntroduction to Automata Theory Languages And ComputationJohn E.Hopcroft, Rajeev Motwani,Pearson						

	Reference Books										
Sl. No	Title of the Book	Name of the Publisher	Edition and Year								
1	Introduction to the Theory of Computation	Michael Sipser	Cengage India Private Limited	3/e, 2014							
2	Introduction to Languages and the Theory of Computation	John C Martin	McGraw-Hill Education	4/e, 2010							
3	Theory of Computation: A Problem-Solving Approach	Kavi Mahesh	Wiley	1/e, 2012							
4	Formal Languages and Automata Theory	C K Nagpal	Oxford Higher Education	1/e, 2011							

	Video Links (NPTEL, SWAYAM)								
Module No.	Link ID								
1	https://archive.nptel.ac.in/courses/106/104/106104148/ https://nptel.ac.in/courses/106106049								
2	https://archive.nptel.ac.in/courses/106/104/106104148/ https://nptel.ac.in/courses/106106049								
3	https://archive.nptel.ac.in/courses/106/104/106104148/ https://nptel.ac.in/courses/106106049								
4	https://archive.nptel.ac.in/courses/106/104/106104148/ https://nptel.ac.in/courses/106106049								

SEMESTER S4

CYBER ETHICS, PRIVACY AND LEGAL ISSUES

(Common to CS/CM/CA/AM)

Course Code	PECST419	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To provide a comprehensive understanding of the fundamental concepts of cyberspace and cyber law, enabling them to analyse and address the challenges of regulating and securing the digital world
- **2.** To explain cybercrime, intellectual property, cyber ethics, and ethical issues in emerging technologies, enabling them to tackle related challenges effectively.
- **3.** To give awareness on data protection and privacy in cyberspace, and to learn legal frameworks protecting privacy, enabling them to address and manage privacy-related challenges effectively

Module No.	Syllabus Description	Contact Hours
1	Fundamentals of Cyber Law and Cyber Space:- Introduction to cyber law, Contract aspects in cyber law, Security aspects of cyber law, Intellectual property aspects in cyber law and Evidence aspects in cyber law, Criminal aspects in cyber law, Need for Indian cyber law Cyberspace- Web space, Web hosting and web development agreement, Legal and Technological Significance of domain Names, Internet as a tool for global	9
2	access. Cyber crime and Cyber Ethics:- Cyber crime and Cyber Ethics:- Introduction to cybercrime- Definition and Origins of Cyber crime- Classifications of Cybercrime, Cyber Offences- Strategic Attacks, Types of Attacks, Security Challenges Faced by Mobile Devices. Organizational Measures for Handling Mobile Phones. Cyber Ethics: The Importance of Cyber Law, Significance of Cyber Ethics, Need for Cyber regulations Based on Cyber Ethics, Ethics in Information	9

	society, Artificial Intelligence Ethics- Ethical Issues in AI and core Principles,				
	Block chain Ethics- Definition and Description.				
	Data Protection and Privacy Concerns in Cyberspace :Need to protect data				
	in cyberspace, Types of data , Legal framework of data protection, Data				
	protection bill -an overview, GDPR, Concept of privacy, Privacy concerns of	9			
3	cyberspace, Constitutional framework of privacy, Judicial interpretation of				
	privacy in India, Privacy Law and Regulation, Organizational Response,				
	Privacy and Data Surveillance				
	Security Policies and Information Technology Act				
	Need for an Information Security policy, Information Security Standards-				
	ISO, Introducing various security policies and their review process,				
4	Information Technology Act, 2000, Penalties, Adjudication and appeals under	9			
	the IT Act,2000, Offences under IT Act, 2000, Right to Information Act,				
	2005, IT Act,2008 and its amendments.				

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Describe the concepts of cyber law and the various components and challenges associated with cyberspace.	K2
CO2	Discuss the concept of cybercrime and computer crime, the challenges faced by law enforcement, and the importance of intellectual property in the digital age.	K2
CO3	Explain the importance of cyber law and ethics, the need for regulations, and the ethical considerations in emerging technologies like AI and blockchain.	K2
CO4	Identify data protection and privacy issues in cyberspace and describe various laws and regulations to address these challenges in the digital age, ensuring comprehensive privacy protection and compliance.	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2										2
CO2	2	2										2
CO3	2	2										2
CO4	2	2										2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Reference Books					
SI. No	Title of the Book	Title of the BookName of the Author/s		Edition and Year		
1	Cyber Security and Cyber Laws	Nilakshi Jain, Ramesh Menon	Wiley	1/e, 2020		
2	Cyber Security understanding Cyber Crimes, Computer Forensics and Legal Perspectives	Sumit Belapure , Nina Godbole	Wiley India Pvt.Ltd.	1/e, 2011		
3	Cyber Ethics 4.0: Serving Humanity with Values	Christoph Stückelberger, Pavan Duggal	Globethics	1/e, 2018		
4	Cyber Laws: Intellectual property & E Commerce, Security	K. Kumar	Dominant Publisher	1/e,2011		
5	Introduction to Information Security and Cyber Laws	Surya Prakash Tripathi, Ritendra Goel, Praveen Kumar Shukla	Dreamtech Press	1/e, 2014		
6	Cyber Law: The Law of the Internet and Information Technology	Craig B	Pearson Education	First Edition,201 3		

	Video Links (NPTEL, SWAYAM)					
Sl. No.	Sl. No. Link ID					
1	https://www.wbnsou.ac.in/NSOU-MOOC/mooc_cyber_security.shtml					
2	https://onlinecourses.swayam2.ac.in/cec22_lw07/preview					
3	https://www.coursera.org/learn/data-security-privacy#modules					
4	https://jurnal.fh.unila.ac.id/index.php/fiat/article/download/2667/1961/12044					

SEMESTER S4

COMPUTER ORGANIZATION

(Common to CM/AM)

Course Code	PECMT415	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	5/3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	GAEST305	Course Type	Theory

Course Objectives

- **1.** To introduce principles of computer organization and the basic architectural concepts using RISC.
- 2. To impart the concepts of microarchitecture, memory systems, and I/O systems.

Module No.	Syllabus Description			
1	 Basic Structure of computers :- Functional units - Basic operational concepts; Memory map; Endianness. CISC vs RISC architectures:- RISC Introduction - Assembly Language, Assembler directives, Assembling. Programming concepts - Program flow, Branching, Conditional statements, Loops, Arrays, Function calls; Instruction execution cycle. Machine language - Instructions, addressing modes, Stored program concept. Evolution of the RISC Architecture. 	9		
2	 Microarchitecture - Introduction; Performance analysis; Single-Cycle Processor - Single Cycle Datapath, Single Cycle Control; Pipelined Processor Pipelined Data Path, Pipelined Control: Hazards, Solving Data/Control Hazards, Performance Analysis. 	9		
3	Memory Systems: Introduction; performance analysis; Caches - basic concepts, Cache mapping, Cache replacement, Multiple-Level Caches, Reducing Miss Rate, Write Policy; Virtual Memory - Address Translation; Page Table; Translation Lookaside Buffer; Memory Protection.	9		

	Input / Output - External Devices; I/O Modules; Programmed I/O, Interrupt	
4	Driven I/O; Direct Memory Access; Embedded I/O Systems - Embedded I/O,	9
	General Purpose I/O, Serial I/O, Other Peripherals.	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Internal Ex	Evaluate	Analyse	Total
5	15	10	10	40

Criteria for Evaluation (Evaluate and Analyse): 20 marks

Use simulators such as Ripes (https://github.com/mortbopet/Ripes) / GEM5 (https://www.gem5.org/) implement components of computer systems such as Various Cache organization and study the effect, Solutions to hazards, TLBs.

• Ability to analyze the requirement and construct computer components.

End Semester Examination Marks (ESE):

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks 	• 2 questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. Each question carries 9 marks.	60
(8x3 = 24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Identify the basic structure and functional units of a digital computer and the features of RISC architecture.	К2
CO2	Analyze the single cycle processor, pipelining, and the associated problems.	K4
CO3	Evaluate and implement the memory organization in modern computer systems.	K5
CO4	Experiment with the I/O organization of a digital computer.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3	3								3
CO3	3	3	3	3								3
CO4	3	3	3	3								3

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Digital Design and Computer Architecture - RISC-V Edition	Sarah L. Harris, David Harris	Morgan Kaufmann	1/e, 2022			
2	Computer Organization and Architecture : Designing for Performance	William Stallings	Pearson	9/e, 2013			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Computer Organization and Design : The Hardware/Software Interface: RISC-V Edition	David A. Patterson John L. Hennessy	Morgan Kaufaman	1/e,2018			
2	Computer Organization and Embedded Systems	Carl Hamacher, Zvonko Vranesic, Safwat Zaky, Naraig Manjikian	McGraw Hil	6/e, 2012			
3	Modern Computer Architecture and Organization	Jim Ledin	Packt Publishing	1/e,2020			

	Video Links (NPTEL, SWAYAM)						
Sl. No.	Sl. No. Link ID						
1	https://archive.nptel.ac.in/courses/106/105/106105163/						
2	2 https://archive.nptel.ac.in/courses/106/106/106106166/						

SEMESTER S4

ADVANCED DATA STRUCTURES

(Common to CS/CD/CM/CA/AM/CB/CN/CC/CU/CI/CG)

Course Code	PECST495	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	5/3	Exam Hours	2Hrs. 30 Min.
Prerequisites (if any)	PCCST303	Course Type	Theory

Course Objectives:

- 1. To equip students with comprehensive knowledge of advanced data structures utilized in cutting-edge areas of computer science, including database management, cyber security, information retrieval, and networked systems.
- **2.** To prepare students to address challenges in emerging fields of computer science by applying advanced data structures to practical, real-world problems.

Module No.	Syllabus Description	Contact Hours
	Foundational Data Structures- Overview of Arrays and Linked Lists,	
	implementation of pointers and objects, Representing rooted trees, Hashing -	
	Hash Tables, Hash functions, Cuckoo Hashing; Bloom Filters - Count-Min	
1	Sketch, Applications to Networks - Click Stream Processing using Bloom	11
	Filters, Applications to Data Science - Heavy Hitters and count-min	
	structures.	
	Advanced Tree Data Structures - Balanced Trees - AVL Trees (review),	
	Red-Black Trees, Suffix Trees and Arrays, Segment Trees, Heaps and Related	
2	Structures - Binomial heap, Fibonacci Heaps, Merkle Trees, Applications to	11
	Information Retrieval and WWW - AutoComplete using Tries.	
	Specialized Data Structures - Spatial Data Structures – Quadtree, K-D Trees	
	(k-dimensional tree); R-trees; Temporal Data Structures- Persistence,	
3	Retroactivity; Search and Optimization Trees - Skip List, Tango Trees;	12
	Applications to Data Science - Approximate nearest neighbor search,	
	Applications to Information Retrieval and WWW, Posting List intersection.	

	Data Structure applications - Distributed and Parallel Data Structures -	
	Distributed Hash Tables (DHTs); Consistent Hashing; Distributed BST; Data	
4	Compression and Transformations - Burrows-Wheeler Transform; Histogram;	11
	Wavelet Trees; Cryptographic Applications – Hashing.	

Course Assessment Method (CIE: 40 marks,ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Internal Ex	Evaluate	Analyse	Total
5	15	10	10	40

Criteria for Evaluation (Evaluate and Analyze): 20 marks

Implement various real world problems using multiple suitable data structures and compare the performance.

End Semester Examination Marks (ESE):

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• 2 questions will be given from each module,	
module.	out of which 1 question should be answered.	
• Total of 8 Questions,	Each question can have a maximum of 3	60
each carrying 3 marks	subdivisions. Each question carries 9 marks.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Implement and use arrays, linked lists, rooted trees and hashing techniques in various programming scenarios.	K3
CO2	Design and implement advanced tree data structures for information retrieval.	K3
CO3	Use spatial and temporal data structures in data science problems.	К3
CO4	Analyze data structures in special scenarios such as distributed, parallel and data compression areas.	K5

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping od Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	3						2	3
CO2	3	3	3	3	3						2	3
CO3	3	3	3	3	3						2	3
CO4	3	3	3	3	3						2	2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Advanced Data Structures: Theory and Applications	Suman Saha, Shailendra Shukla	CRC Press	1/e, 2019		
2	Advanced Data Structures	Peter Brass	Cambridge University Press	1/e, 2008		
3	Introduction to Algorithms	Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, Clifford Stein	MIT Press	4/e, 2022		
4	Fundamentals of Computer Algorithms	Ellis Horowitz, SatrajSahani and Rajasekharam	University Press	2/e, 2009		
5	Advanced Data Structures	Reema Thareja, S. Rama Sree	Oxford University Press	1/e, 2018		
6	Data Structures and Algorithm Analysis in C++,	Mark Allen Weiss	Pearson	2/e, 2004.		
7	Design and Analysis of Algorithms	M T Goodrich, Roberto Tamassia	Wiley	1/e, 2021		

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://web.stanford.edu/class/cs166/					

SEMESTER S4

ECONOMICS FOR ENGINEERS

(Common to All Branches)

Course Code	UCHUT346	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	2:0:0:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Understanding of finance and costing for engineering operation, budgetary planning and control
- 2. Provide fundamental concept of micro and macroeconomics related to engineering industry
- 3. Deliver the basic concepts of Value Engineering.

Module No.	Syllabus Description			
1	Basic Economics Concepts - Basic economic problems - Production Possibility Curve - Utility - Law of diminishing marginal utility - Law of Demand - Law of supply - Elasticity - measurement of elasticity and its applications - Equilibrium- Changes in demand and supply and its effects Production function - Law of variable proportion - Economies of Scale - Internal and External Economies - Cobb-Douglas Production Function	6		
2	Cost concepts – Social cost, private cost – Explicit and implicit cost – Sunk cost - Opportunity cost - short run cost curves - Revenue concepts Firms and their objectives – Types of firms – Markets - Perfect Competition – Monopoly - Monopolistic Competition - Oligopoly (features and equilibrium of a firm)	6		
3	Monetary System – Money – Functions - Central Banking –Inflation - Causes and Effects – Measures to Control Inflation - Monetary and Fiscal policies – Deflation Taxation – Direct and Indirect taxes (merits and demerits) - GST	6		

	National income – Concepts - Circular Flow – Methods of Estimation and Difficulties - Stock Market – Functions- Problems faced by the Indian stock market-Demat Account and Trading Account – Stock market Indicators- SENSEX and NIFTY	
4	Value Analysis and value Engineering - Cost Value, Exchange Value, Use Value, Esteem Value - Aims, Advantages and Application areas of Value Engineering - Value Engineering Procedure - Break-even Analysis - Cost- Benefit Analysis - Capital Budgeting - Process planning	6

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Case study/Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total	
10	15	12.5	12.5	50	

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B		
• Minimum 1 and Maximum	• 2 questions will be given from each module, out		
2 Questions from each	of which 1 question should be answered.		
module.	• Each question can have a maximum of 2 sub		
• Total of 6 Questions, each	divisions.	50	
carrying 3 marks	• Each question carries 8 marks.		
(6x3 =18marks)	(4x8 = 32 marks)		

Course Outcomes (COs)

At the end of the course students should be able to:

	Bloom's Knowledge Level (KL)				
COL	Understand the fundamentals of various economic issues using laws and	K2			
CO1	learn the concepts of demand, supply, elasticity and production function.				
CO2	Develop decision making capability by applying concepts relating to costs and revenue, and acquire knowledge regarding the functioning of firms in different market situations.	К3			
CO3	Outline the macroeconomic principles of monetary and fiscal systems, national income and stock market.	K2			
CO4	Make use of the possibilities of value analysis and engineering, and solve simple business problems using break even analysis, cost benefit analysis and capital budgeting techniques.	К3			

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	-	-	-	1	-	-	-	-	1	-
CO2	-	-	-	-	-	1	1	-	-	-	1	-
CO3	-	-	-	-	1	-	-	-	-	-	2	-
CO4	-	-	-	-	1	1	-	-	-	-	2	-

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Managerial Economics	Geetika, Piyali Ghosh and Chodhury	Tata McGraw Hill,	2015					
2	Engineering Economy	H. G. Thuesen, W. J. Fabrycky	PHI	1966					
3	Engineering Economics	R. Paneerselvam	PHI	2012					

		Reference Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Engineering Economy	Leland Blank P.E, Anthony Tarquin P. E.	Mc Graw Hill	7 TH Edition
2	Indian Financial System	Khan M. Y.	Tata McGraw Hill	2011
3	Engineering Economics and analysis	Donald G. Newman, Jerome P. Lavelle	Engg. Press, Texas	2002
4	Contemporary Engineering Economics	Chan S. Park	Prentice Hall of India Ltd	2001

SEMESTER S4

Course Code	UCHUT347	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	2:0:0:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

ENGINEERING ETHICS AND SUSTAINABLE DEVELOPMENT

Course Objectives:

- 1. Equip with the knowledge and skills to make ethical decisions and implement gender-sensitive practices in their professional lives.
- 2. Develop a holistic and comprehensive interdisciplinary approach to understanding engineering ethics principles from a perspective of environment protection and sustainable development.
- 3. Develop the ability to find strategies for implementing sustainable engineering solutions.

SYLLABUS

Module No.	Syllabus Description		
1	 Fundamentals of ethics - Personal vs. professional ethics, Civic Virtue, Respect for others, Profession and Professionalism, Ingenuity, diligence and responsibility, Integrity in design, development, and research domains, Plagiarism, a balanced outlook on law - challenges - case studies, Technology and digital revolution-Data, information, and knowledge, Cybertrust and cybersecurity, Data collection & management, High technologies: connecting people and places-accessibility and social impacts, Managing conflict, Collective bargaining, Confidentiality, Role of confidentiality in moral integrity, Codes of Ethics. Basic concepts in Gender Studies - sex, gender, sexuality, gender spectrum: beyond the binary, gender identity, gender expression, gender stereotypes, Gender disparity and discrimination in education, employment and everyday life, History of women in Science & Technology, Gendered technologies & innovations, Ethical values and practices in connection with 	6	

	gender - equity, diversity & gender justice, Gender policy and				
	women/transgender empowerment initiatives.				
	Introduction to Environmental Ethics: Definition, importance and				
	historical development of environmental ethics, key philosophical theories				
	(anthropocentrism, biocentrism, ecocentrism). Sustainable Engineering				
	Principles: Definition and scope, triple bottom line (economic, social and				
	environmental sustainability), life cycle analysis and sustainability metrics.				
2	Ecosystems and Biodiversity: Basics of ecosystems and their functions,	6			
	Importance of biodiversity and its conservation, Human impact on ecosystems				
	and biodiversity loss, An overview of various ecosystems in Kerala/India, and				
	its significance. Landscape and Urban Ecology: Principles of landscape				
	ecology, Urbanization and its environmental impact, Sustainable urban				
	planning and green infrastructure.				
	Hydrology and Water Management: Basics of hydrology and water cycle,				
	Water scarcity and pollution issues, Sustainable water management practices,				
	Environmental flow, disruptions and disasters. Zero Waste Concepts and				
	Practices: Definition of zero waste and its principles, Strategies for waste				
	reduction, reuse, reduce and recycling, Case studies of successful zero waste				
	initiatives. Circular Economy and Degrowth: Introduction to the circular				
3	economy model, Differences between linear and circular economies, degrowth	6			
	principles, Strategies for implementing circular economy practices and				
	degrowth principles in engineering. Mobility and Sustainable				
	Transportation: Impacts of transportation on the environment and climate,				
	Basic tenets of a Sustainable Transportation design, Sustainable urban				
	mobility solutions, Integrated mobility systems, E-Mobility, Existing and				
	upcoming models of sustainable mobility solutions.				
	Renewable Energy and Sustainable Technologies: Overview of renewable				
	energy sources (solar, wind, hydro, biomass), Sustainable technologies in				
	energy production and consumption, Challenges and opportunities in				
	renewable energy adoption. Climate Change and Engineering Solutions:				
4	Basics of climate change science, Impact of climate change on natural and	6			
	human systems, Kerala/India and the Climate crisis, Engineering solutions to				
	mitigate, adapt and build resilience to climate change. Environmental				
	Policies and Regulations: Overview of key environmental policies and				
	regulations (national and international), Role of engineers in policy				
	implementation and compliance, Ethical considerations in environmental				

policy-making. Case Studies and Future Directions: Analysis of real-world	
case studies, Emerging trends and future directions in environmental ethics	
and sustainability, Discussion on the role of engineers in promoting a	
sustainable future.	

Course Assessment Method (CIE: 50 marks, ESE: 50)

Continuous Internal Evaluation Marks (CIE):

Continuous internal evaluation will be based on individual and group activities undertaken throughout the course and the portfolio created documenting their work and learning. The portfolio will include reflections, project reports, case studies, and all other relevant materials.

- The students should be grouped into groups of size 4 to 6 at the beginning of the semester. These groups can be the same ones they have formed in the previous semester.
- Activities are to be distributed between 2 class hours and 3 Self-study hours.
- The portfolio and reflective journal should be carried forward and displayed during the 7th Semester Seminar course as a part of the experience sharing regarding the skills developed through various courses.

SI. No.	Item	Group/I ndividua l (G/I)	Marks	
1	Reflective Journal	Weekly entries reflecting on what was learned, personal insights, and how it can be applied to local contexts.	Ι	5
2	Micro project (Detailed documentation of	 1 a) Perform an Engineering Ethics Case Study analysis and prepare a report 1 b) Conduct a literature survey on 'Code of Ethics for Engineers' and prepare a sample code of ethics 	G	8
	the project, including methodologies, findings, and	2. Listen to a TED talk on a Gender-related topic, do a literature survey on that topic and make a report citing the relevant papers with a specific analysis of the Kerala context	G	5
	reflections)	3. Undertake a project study based on the concepts of sustainable development* - Module II, Module III & Module IV	G	12
3	Activities	2. One activity* each from Module II, Module III & Module IV	G	15
4	Final Presentation	A comprehensive presentation summarising the key takeaways from the course, personal reflections, and proposed future actions based on the learnings.	G	5
	1	Total Marks		50

*Can be taken from the given sample activities/projects

Evaluation Criteria:

- **Depth of Analysis**: Quality and depth of reflections and analysis in project reports and case studies.
- Application of Concepts: Ability to apply course concepts to real-world problems and local contexts.
- Creativity: Innovative approaches and creative solutions proposed in projects and reflections.
- Presentation Skills: Clarity, coherence, and professionalism in the final presentation.

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Develop the ability to apply the principles of engineering ethics in their professional life.	К3
CO2	Develop the ability to exercise gender-sensitive practices in their professional lives	K4
CO3	Develop the ability to explore contemporary environmental issues and sustainable practices.	К5
CO4	Develop the ability to analyse the role of engineers in promoting sustainability and climate resilience.	K4
CO5	Develop interest and skills in addressing pertinent environmental and climate-related challenges through a sustainable engineering approach.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1						3	2	3	3	2		2
CO2		1				3	2	3	3	2		2
CO3						3	3	2	3	2		2
CO4		1				3	3	2	3	2		2
CO5						3	3	2	3	2		2

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Ethics in Engineering Practice and Research	Caroline Whitbeck	Cambridge University Press & Assessment	2nd edition & August 2011		
2	Virtue Ethics and Professional Roles	Justin Oakley	Cambridge University Press & Assessment	November 2006		
3	Sustainability Science	Bert J. M. de Vries	Cambridge University Press & Assessment	2nd edition & December 2023		
4	Sustainable Engineering Principles and Practice	Bhavik R. Bakshi,	Cambridge University Press & Assessmen	2019		
5	Engineering Ethics	M Govindarajan, S Natarajan and V S Senthil Kumar	PHI Learning Private Ltd, New Delhi	2012		
6	Professional ethics and human values	RS Naagarazan	New age international (P) limited New Delhi	2006.		
7	Ethics in Engineering	Mike W Martin and Roland Schinzinger,	Tata McGraw Hill Publishing Company Pvt Ltd, New Delhi	4" edition, 2014		

Suggested Activities/Projects:

Module-II

- Write a reflection on a local environmental issue (e.g., plastic waste in Kerala backwaters or oceans) from different ethical perspectives (anthropocentric, biocentric, ecocentric).
- Write a life cycle analysis report of a common product used in Kerala (e.g., a coconut, bamboo or rubber-based product) and present findings on its sustainability.
- Create a sustainability report for a local business, assessing its environmental, social, and economic impacts
- Presentation on biodiversity in a nearby area (e.g., a local park, a wetland, mangroves, college campus etc) and propose conservation strategies to protect it.
- Develop a conservation plan for an endangered species found in Kerala.
- Analyze the green spaces in a local urban area and propose a plan to enhance urban ecology using native plants and sustainable design.
- Create a model of a sustainable urban landscape for a chosen locality in Kerala.

Module-III

- Study a local water body (e.g., a river or lake) for signs of pollution or natural flow disruption and suggest sustainable management and restoration practices.
- Analyse the effectiveness of water management in the college campus and propose improvements calculate the water footprint, how to reduce the footprint, how to increase supply through rainwater harvesting, and how to decrease the supply-demand ratio
- Implement a zero waste initiative on the college campus for one week and document the challenges and outcomes.
- Develop a waste audit report for the campus. Suggest a plan for a zero-waste approach.
- Create a circular economy model for a common product used in Kerala (e.g., coconut oil, cloth etc).
- Design a product or service based on circular economy and degrowth principles and present a business plan.
- Develop a plan to improve pedestrian and cycling infrastructure in a chosen locality in Kerala

Module-IV

- Evaluate the potential for installing solar panels on the college campus including cost-benefit analysis and feasibility study.
- Analyse the energy consumption patterns of the college campus and propose sustainable alternatives to reduce consumption What gadgets are being used? How can we reduce demand using energy-saving gadgets?
- Analyse a local infrastructure project for its climate resilience and suggest improvements.
- Analyse a specific environmental regulation in India (e.g., Coastal Regulation Zone) and its impact on local communities and ecosystems.
- Research and present a case study of a successful sustainable engineering project in Kerala/India (e.g., sustainable building design, water management project, infrastructure project).
- Research and present a case study of an unsustainable engineering project in Kerala/India highlighting design and implementation faults and possible corrections/alternatives (e.g., a housing complex with water logging, a water management project causing frequent floods, infrastructure project that affects surrounding landscapes or ecosystems).

SEMESTER S4

MACHINE LEARNING LAB

Course Code	PCAML407	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:3:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Lab

Course Objectives:

- **1.** To enable the learners to design and implement solutions based on machine learning techniques for various real world problems.
- 2. To provide the ability to analyse and evaluate various machine learning algorithms.

Expt. No.	Experiments				
1	Design and Implementation of Simple Linear Regression (Eg: Using the <i>Advertising dataset</i> (https://www.kaggle.com/datasets/ashydv/advertising- dataset/data), analyse the relationship between <i>TV advertising</i> and <i>Sales</i> using a simple linear regression model.)				
2	Design and Implementation of Multivariable Linear Regression(Eg: How well can we predict sales using the combined spending on TV, radio, andnewspaper advertising, and what is the relative impact of each advertising channel on sales?UselinearregressionontheAdvertisingdataset(https://www.kaggle.com/datasets/ashydv/advertising-dataset/data).)				
3	Design and Implementation of Logistic Regression (Eg: Use logistic regression to predict whether a customer will churn based on their usage patterns and demographic features for the dataset <i>Telco Customer Churn</i> (https://www.kaggle.com/datasets/blastchar/telco-customer-churn/data).)				
4	Design and Implementation of Decision Trees (Eg: Can we predict the presence of heart disease in patients using a Decision Tree classifier on the dataset <i>Heart Disease</i> (https://www.kaggle.com/datasets/johnsmith88/heart-disease- dataset)? Evaluate the performance of the model using appropriate metrics.)				

	Design and Implementation of Support Vector Machines					
	(Eg: Can we accurately classify whether a tumour is benign or malignant using a Support					
5	Vector Machine (SVM) classifier? Use the Breast Cancer Wisconsin (Diagnostic) Data Set					
	(https://www.kaggle.com/datasets/uciml/breast-cancer-wisconsin-data). Evaluate the					
	performance of the model using appropriate metrics.)					
	Design and Implementation of KNN- Classifier					
	(Eg: Can we predict the quality of red wine based on its physicochemical properties using					
6	a k-Nearest Neighbours (k-NN) classifier on the Wine Quality Data Set (
	https://www.kaggle.com/datasets/yasserh/wine-quality-dataset)? Evaluate the performance					
	of the model using appropriate metrics.					
	Design and Implementation of Naive Bayes Classifier					
	(Eg: Can we accurately classify SMS messages as spam or non-spam using a Naive Bayes					
7	classifier on the SMS Spam Collection Dataset (
	https://www.kaggle.com/datasets/uciml/sms-spam-collection-dataset)? Evaluate the					
	performance of the model using appropriate metrics.)					
	Design and Implementation of Perceptron models to perform simple arithmetic and logic					
8	operations					
	Design and Implementation of the K-means Clustering					
	(Eg: Segment customers into distinct groups based on their purchasing behaviour using k-					
9	means clustering on the <i>Mall Customers Dataset</i> (
	https://www.kaggle.com/datasets/simtoor/mall-customers).)					
	Design and Implementation of the Hierarchical Agglomerative Clustering(Eg: How can we effectively segment Iris flowers into distinct species using hierarchical					
10						
	agglomerative clustering on the dataset Iris (https://www.kaggle.com/datasets/uciml/iris)? What insights can we gain from these clusters?					
	Design and Implementation of PCA					
11	(Eg: How can we effectively use Principal Component Analysis (PCA) to reduce the					
	dimensionality of the Breast Cancer Wisconsin (Diagnostic) Data Set (
	https://www.kaggle.com/datasets/uciml/breast-cancer-wisconsin-data) and visualize the					
	key patterns in the data?)					
	Design and Implementation of Expectation Maximization					
12	(Eg: How can we effectively use the Expectation-Maximization (EM) algorithm to identify					
	customer segments in the dataset in https://www.kaggle.com/datasets/yasserh/customer-					
	segmentation-dataset, and what insights can we gain from these segments?)					
13	Design and Implementation of Ensembling methods , Bagging and boosting					
	(Eg: How do ensemble methods such as bagging and boosting compare in terms of					

	classification performance on the adult income dataset (
	https://www.kaggle.com/datasets/wenruliu/adult-income-dataset)?)										
	A Real World Problem – Find a real world problem that can be solved using the various										
	concepts of machine learning. Design, implement and evaluate your solution.										
	(Eg: Predicting Student Examination Performance Based on Internal Marks: Develop a real										
	life dataset using the historical data of your institution. Use various machine learning										
14	algorithms to build models to predict students' final examination scores based on their										
	internal assessment marks and evaluate their performance. Use ensemble methods to										
	improve accuracy of prediction. Also, segment the students using clustering techniques to										
	identify potential students at academic risk so that the educators can make tir										
	interventions.)										

NB:-

1. For each of the above experiments, questions may be customized in such a way that, the students should exercise the simple, medium and the tough cases of the respective experiment. Datasets, if any required, may be downloaded from the Kaggle Platform.

2. The implementation of the experiments is to be conducted using a programming language such as *Python or R, which supports machine learning features.*

Course Assessment Method (CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment)	Internal Examination	Total
5	25	20	50

End Semester Examination Marks (ESE):

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	Result with valid inference/ Quality of Output	Viva voce	Record	Total
10	15	10	10	5	50

- Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.
- Endorsement by External Examiner: The external examiner shall endorse the record

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome					
CO1	Explain the implementation procedures for the machine learning algorithms	К2				
CO2	Construct and evaluate machine learning solutions to classification, regression and clustering problems.	K4				
СОЗ	Make use of appropriate data sets for the Machine Learning problems under consideration	К3				
CO4	Build machine learning models with better performance by ensembling different machine learning models.	К3				

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO- PO Mapping (Mapping of Course Outcomes with Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3								2
CO2	3	3	3	3	3							2
CO3	3	3	3	3	3							2
CO4	3	3	3	3	3							2

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems	Aurélien Géron	O'Reilly	3/e, 2022				
2	Machine Learning using Python	Manaranjan Pradhan, U Dinesh Kumar	Wiley	1/e, 2019				

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Machine Learning	Tom M. Mitchell	Tata McGraw Hill	1/e, 1997			
2	The Elements of Statistical Learning Data Mining, Inference, and Prediction	Trevor Hastie Robert Tibshirani Jerome Friedman	Springer Publishers	2/e , 2017			
3	Understanding Machine Learning: From Theory to Algorithms	Shai Shalev-Shwartz, Shai Ben-David	Cambridge University Press	1/e, 2014			

	Video Links (NPTEL, SWAYAM)						
Sl. No.	Sl. No. Link ID						
1	https://youtu.be/fC7V8QsPBec?si=8kqBn7x1RG5V1J						
2	https://youtu.be/g_LURKuIj4?si=Xj10NPfMfpQSOhVx						
3	https://youtu.be/yG1nETGyW2E?si=yS1xpeWuFAUQBf7-						
4	https://youtu.be/zop2zuwF_bc?si=W7TpSHLdi4rykva4						

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

- 1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)
 - Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
 - Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
 - Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
 - Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

• Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted

SEMESTER S4

ARTIFICIAL INTELLIGENCE LAB

(Common to CM/AM)

Course Code	PCCML408	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:3:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Lab

Course Objectives:

- 1. To experience the implementation of the AI techniques appropriate to solve a particular problem.
- **2.** To teach how to apply AI algorithms to solve real world problems.

Expt. No.	Experiments (Using Python / LISP)
1	Solve the Tic-Tac-Toe problem using the Breadth First Search technique.
2	Solve the Water jug problem using the Depth First Search technique.
3	A crypt-arithmetic puzzle is a type of mathematical puzzle in which digits are assigned to alphabetical letters or symbols. The end goal is to find the unique digit assignment to each letter so that the given mathematical operation holds true. Solve the puzzles i) EAT + THAT = APPLE ii) POINT + ZERO = ENERGY iii) CROSS + ROADS = DANGER
4	Consider the Blocks World Domain Game which starts with an initial state consisting of a fixed number of blocks arranged in 3 stacks and can move only top blocks of the stacks and have to achieve a goal state that is a particular arrangement of blocks by moving these blocks. Blocks World is a planning problem where the goal state is known beforehand and the path to the Goal state is more important. Implement the best first search algorithm and try out a minimum of 3 different heuristic functions and compare the results with valid reasoning. Use a priority queue for the OPEN list to make it computationally efficient.
	An example of Initial State is: E
	B F
	D A C
	Correspondingly, the Goal State:

	A D B
	E F C
5	Implement A* algorithm to solve the Missionaries and Cannibals problem.
6	Implement an agent that can solve the Block World problem optimally (in the minimum number of moves) for an arbitrary initial arrangement of blocks (A-Z, 26 blocks maximum) using Generate & Test and Means-Ends Analysis techniques.
7	Implement Simulated Annealing Search Algorithm for solving the 8-puzzle problem.
8	Implement and test hill climbing based search algorithms to solve Travelling Salesman Problem.
9	Develop a program to construct a pruned game tree using Alpha-Beta pruning. Take the sequence, [5, 3, 2, 4, 1, 3, 6, 2, 8, 7, 5, 1, 3, 4] of MINIMAX values for the nodes at the cutoff depth of 4 plies. Assume that branching factor is 2, MIN makes the first move, and nodes are generated from right to left.
10	Solve the wumpus world problem using the logical reasoning method.
11	Solve and implement the tower of Hanoi problem by planning.

Course Assessment Method (CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment)	Internal Examinatio n	Total
5	25	20	50

End Semester Examination Marks (ESE):

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	Result with valid inference/ Quality of Output	Viva voce	Record	Total
10	15	10	10	5	50

- **Submission of Record:** Students shall be allowed for the end semester examination only upon submitting the duly certified record.
- Endorsement by External Examiner: The external examiner shall endorse the record

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome		
C01	Implement various search strategies for solving real life AI problems.	К3	
CO2	Use logical reasoning methods to solve AI problems.	К3	
CO3	Choose the correct planning strategy for solving AI problems.	К3	

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO- PO Mapping (Mapping of Course Outcomes with Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	2	3	-	-	-	-	-	2	3
CO2	3	2	2	2	3	-	-	-	-	-	2	3
CO3	3	2	2	2	3	-	-	-	-	-	2	3

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books				
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
1	Artificial Intelligence: A Modern Approach	Stuart Russel, Peter Norvig	Pearson Education	4/e, 2021	
2	Artificial Intelligence	Kevin Knight, Elaine Rich, Shivashankar B. Nair	Tata McGraw-Hill	3/e, 2009	

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Introduction to Artificial Intelligence and Expert Systems	Dan W. Patterson	Pearson Education	1/e, 2015		
2	Artificial Intelligence: Structures and Strategies for Complex Problem Solving	George F. Luger	Pearson Education	6/e, 2009		
3	Artificial Intelligence : Making a System Intelligent	Nilakshi Jain	Wiley	1/e, 2019		

	Video Links (NPTEL, SWAYAM)			
Module No. Link ID				
1	https://youtu.be/pKeVMlkFpRc?si=MTXHLZb9Le0tQwtc			
2	https://youtu.be/sUNzYUPfw?si=3McRqcTYLmIdJQ48			
3	https://youtu.be/3C6ZLS-gfXU?si=XGDejaePCnwXdRgI			

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

• Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.

- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

• Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted