SEMESTER 5

ARTIFICIAL INTELLIGENCE & MACHINE LEARNING

INTRODUCTION TO INTERNET OF THINGS

Course Code	PCAMT501	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To give an understanding in the area of Internet of Things, including the components, tools, and analysis through its fundamental theory and real-world applications.
- 2. To enable the students to develop real world IoT solutions

Module	Syllabus Description	
No.		
1	Introduction to IoT- Physical Design of IoT, Logical Design of IoT, IoT levels	0
1	Agriculture, Health and lifestyle.	9
	IoT and M2M-M2M, Difference between IoT and M2M, Software Defined	
	Networking, Network Function virtualization, Need for IoT System	
	Management, Simple Network Management Protocol(SNMP), NETCONF,	
2	YANG	13
	LPWAN - LPWAN applications, LPWAN technologies, Cellular (3GPP) and	
	Non 3GPP standards, Comparison of various protocols like Sigfox, LoRA,	
	LoRAWAN, Weightless, NB-IoT, LTE-M.	
	Developing IoT - IoT design methodology, Case study on IoT system for	
3	weather monitoring, Motivations for using python, IoT-system Logical design	12
5	using python, Python Packages of Interest for IoT - JSON, XML, HTTPlib &	12
	URLLib, SMTPLib	
	Programming Raspberry Pi with Python-Controlling LED with Raspberry Pi,	
4	Interfacing an LED and switch with Raspberry Pi, Other IoT devices- PcDino,	10
	Beagle bone Black, Cubieboard, Data Analytics for IoT	

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0
carrying 3 marks	• Each question can have a maximum of 3	00
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course, students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Experiment with domain-specific applications and apply the principles of IoT, including physical and logical design and deployment templates	К3
CO2	Use the principles of IoT and M2M, their differences, and key concepts like SDN, NFV, and essential management protocols such as SNMP, NETCONF, and YANG.	К3
CO3	Develop real world applications using IoT design methodology	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									2
CO2	3	3	3									2
CO3	3	3	3	3	3							2

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Internet of Things - a Hands On Approach.	Arshdeep Bahga, Vijay Madisetti	Universities Press	1/e, 2016		

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Internet of Things : Architecture and Design Principles	Raj Kamal	McGraw Hill	1/e, 2017		
2	The Internet of Things –Key applications and Protocols	Olivier Hersent, David Boswarthick, Omar Elloumi	Wiley	1/e, 2012		
3	IoT fundamentals : Networking Technologies, Protocols and Use Cases for the Internet of Things	David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Robert Barton and Jerome Henry	Pearson Education	1/e, 2017		

Video Links (NPTEL, SWAYAM)			
Sl. No.	Link ID		
1	https://archive.nptel.ac.in/courses/106/105/106105166/		
2	https://archive.nptel.ac.in/courses/108/108/108108179/		

DESIGN AND ANALYSIS OF ALGORITHMS

(Common to CS/CD/CM/AM/CB/CN/CU/CG)

Course Code	PCCST502	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCST303	Course Type	Theory

Course Objectives:

- 1. To gain a foundational understanding of algorithms and their analysis.
- **2.** To develop problem-solving skills using various algorithm design paradigms like divide and conquer, dynamic programming, etc.
- **3.** To understand the concepts of tractable and intractable problems, and different complexity classes (P, NP, NP-hard, NP-complete).

Module	Sullabus Description	Contact		
No.	Synabus Description			
	Algorithms - Characteristics, Criteria for Analysing Algorithms; Time and			
	Space Complexity - Best, Worst, and Average Case Complexities;			
	Asymptotic Notations and their properties; Time and Space Complexity			
1	Calculation of simple algorithms; Analysis of Recursive Algorithms -	11		
	Recurrence Equations, Solution of Recurrence Equations : Iteration Method,	11		
	Recursion Tree Method, Substitution method and Master's Theorem (proof			
	not expected); Balanced Search Trees - AVL Trees (Insertion and deletion			
	operations with all rotations in detail, algorithms not expected)			

2	 Disjoint Sets - Disjoint set operations, Union and find algorithms, Analysis of union by rank with path compression, Connected components of a Graph; Graphs – Representations, Traversals : BFS, DFS and their analysis, Strongly Connected Components; Topological Sorting. Divide and Conquer Strategy – Control Abstraction, Merge Sort, Strassen's Matrix Multiplication, Analysis. 	11
3	Greedy Strategy - Control Abstraction, Fractional Knapsack; Minimum Cost Spanning Tree – Kruskal's and Prim's, Analysis; Shortest Path Problem – Dijkstra's Algorithm, Analysis; Dynamic Programming - Control Abstraction, Optimality Principle, Matrix Chain Multiplication, Analysis; All Pairs Shortest Path Algorithm - Floyd-Warshall Algorithm, Analysis; Backtracking - Control Abstraction, N – Queens Problem, Algorithm.	11
4	Branch and Bound - Control Abstraction, Travelling Salesman Problem, Algorithm; Complexity - Tractable and Intractable Problems; Complexity Classes : P, NP, NP- Hard and NP-Complete Classes; NP Completeness proof - Clique Problem and Vertex Cover Problem; Approximation algorithms - Bin Packing; Randomized Algorithms - Definitions of Monte Carlo and Las Vegas algorithms; Randomized version of Quick Sort algorithm with analysis.	11

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3	00
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Analyze any given algorithm and express its time and space complexities in asymptotic notations.	К4
CO2	Solve the recurrence equations using Iteration, Recurrence Tree, Substitution and Master's Method to compute time complexity of algorithms.	К3
CO3	Illustrate the operations of advanced data structures like AVL trees and Disjoint sets.	К3
CO4	Illustrate the representation, traversal and different operations on Graphs.	К3
CO5	Demonstrate Divide-and-conquer, Greedy Strategy, Dynamic programming, Branch-and Bound and Backtracking algorithm design techniques.	K2
CO6	Classify a problem as computationally tractable or intractable, and discuss strategies to address intractability.	K4

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2								3
CO2	3	3	3									2
CO3	3	3	3									3
CO4	3	3	3									3
CO5	3	3	3	2								2
CO6	3	3	3	2								2

Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Introduction to Algorithms	T.H.Cormen, C.E.Leiserson, R.L.Rivest, C. Stein,	Prentice-Hall India	4/e, 2018		
2	Fundamentals of Computer Algorithms	Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajasekaran,	Orient Longman Universities Press	2/e, 2008		
3	Computer Algorithms, Introduction to Design and Analysis	Sara Baase and Allen Van Gelder	Pearson Education	3/e, 2009		

Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Design and Analysis of Algorithms	Michael T. Goodrich Roberto Tamassia	Wiley	1/e, 2021				
2	Algorithm Design	Jon Kleinberg, Eva Tardos	Pearson Education	1/e, 2005				
3	Algorithms	Robert Sedgewick, Kevin Wayne	Pearson Education	4/e, 2011				
4	Fundamentals of Algorithmics	GIIles Brassard, Paul Brately	Pearson Education	1/e, 1996				
5	The Algorithm Design Manual	Steven S. Skiena	Springer	2/e, 2008				

Video Links (NPTEL, SWAYAM)					
Module No.	Link ID				
1	https://archive.nptel.ac.in/courses/106/106/106106131/				
2	https://www.coursera.org/learn/dynamic-programming-greedy-algorithms				
3	https://online.stanford.edu/courses/soe-ycsalgorithms1-algorithms-design-and-analysis- part-1				
4	https://online.stanford.edu/courses/soe-ycs0001-algorithms-design-and-analysis-part-2				

DEEP LEARNING CONCEPTS

Course Code	PCCMT503	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- **1.** To give the learners an understanding about the foundations of deep learning architecture and applications.
- **2.** To equip the learners with the necessary skills to set up neural network architecture and use it for real life problem solutions.

SYLLA	ABUS
-------	------

Module No.	Syllabus Description	Contact Hours	
1	Review of Neural Networks:-		
	Biological Neuron vs. Artificial Neuron, Activation Functions (Step, Sign,	n,	
	Sigmoid, Softmax, tanh, ReLU, LreLU, EReLU functions), Single Layer	9	
	Perceptron, Linear Separability, XOR Problem, Multilayer Perceptron, Back-		
	propagation algorithm.		
	Convolutional Neural Networks (CNN):-		
	CNN-Architectural Overview, Motivation, Layers, Filters, Parameter sharing,		
2	Regularization, Convolution and Pooling as infinitely strong prior, Variants of	11	
	Convolution Operation, Efficient Convolution Computation Methods, Popular		
	CNN Architectures (ResNet, Alexnet, VGGNet, Inception)		
	Recurrent Neural Networks (RNN):-		
3	Model of a typical RNN, Computation Graph, Bidirectional RNNs, Encoder -		
	decoder sequence to sequence architectures, BPTT for training RNN, Deep	11	
	Recurrent Networks, Recursive Recurrent Networks, Long Short Term		
	Memory Networks (LSTM), Gated Recurrent Networks (GRU)		

	Unsupervised Deep Learning Models:-	
	AutoEncoders(AE), Types of AutoEncoders (Undercomplete AE, Sparse AE,	
	Deep AE, Contractive AE, Denoising AE, Convolutional AE, Variational	
4	AE), Boltzmann machines, Types of Boltzmann machines (Restricted	
	Boltzmann Machines, Deep Belief Networks, Deep Boltzmann Machines)	11
	Applications of Deep Learning:-	
	Speech Processing, Computer Vision, Natural Language Processing, Word	
	Embedding Techniques (TF-IDF, Word2Vec, GloVe)	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

At the end of the course students should be able to:

	Bloom's Knowledge Level (KL)	
CO1	Illustrate fundamental neural network architectures and algorithms, including Multilayer Perceptron and Back-propagation.	K3
CO2	Design and evaluate various deep learning architectures, including feed- forward networks, Convolutional Neural Networks (CNNs), and their applications in real-world problems	K3
СО3	Develop and utilize Recurrent Neural Networks (RNNs) and Long Short-Term Memory Networks (LSTMs) for sequence modelling and natural language processing tasks.	К3
CO4	Use unsupervised learning techniques such as Autoencoders and Boltzmann machines to solve complex problems in computer vision and speech recognition.	K3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3								3
CO2	3	3	3	3								3
CO3	3	3	3	3								3
CO4	3	3	3	3								3

Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
1	Deep Learning	Ian Goodfellow, Yoshua Bengio and Aaron Courville	MIT Press	1/e, 2016	
2	Neural Networks and Deep Learning	Charu C Agarwal	Springer	2/e, 2023	
3	Neural Networks and Deep Learning	Michael A. Nielsen	Determination Press	2/e, 2015	
4	Learning Deep Architectures for AI: 4 (Foundations and Trends in Machine Learning)	Yoshua Bengio	now Publishers Inc.	1/e, 2009	
5	Deep Learning: A Practitioner's Approach	Josh Patterson, Adam Gibson	O'Reilly Media	1/e, 2017	

Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Applied Deep Learning.	Umberto Michelucci	APRESS	1/e, 2018		
2	Deep Learning with Keras	Antonio Gulli, Sujit Pal	Packt Publishers	1/e, 2017		
3	Deep Learning with Python	Francois Chollet	Manning Publications	1/e, 2017		

Video Links (NPTEL, SWAYAM)				
Sl. No.	Link ID			
1	https://nptel.ac.in/courses/106105215 (Week 4)			
2	https://nptel.ac.in/courses/106105215 (Week 5)			
3	https://nptel.ac.in/courses/106105215 (Week 8)			
4	https://nptel.ac.in/courses/106105215 (Week 10,11 and 12)			

Course Code	PBCMT504	CIE Marks	60
Teaching Hours/Week (L: T:P: R)	3:0:0:1	ESE Marks	40
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

INTRODUCTION TO COMPUTER VISION

Course Objectives:

- 1. To teach the basics of image formation, key computer vision concepts, methods, techniques, pattern recognition, and various problems in designing computer vision and object recognition systems.
- **2.** To enable the learners to understand the fundamentals of computer vision and machine learning models to develop applications in computer vision.

Module No.	Iodule Syllabus Description	
1	Fundamentals in Computer Vision :- Camera Calibration- Pinhole camera model, Geometric Image Features - Curves, Surfaces, Analytical Image Features - Elements of Analytical Euclidean Geometry, Geometric Camera Parameters, Stereopsis - Binocular Camera Geometry, Epipolar Constraint, Binocular Reconstruction, Local Methods for Binocular Fusion, Global Methods for Binocular Fusion	11
2	Features and Filters :- Linear Filters- Linear Filters and Convolution, Shift Invariant Linear Systems. Estimating Derivatives with Finite Differences, Noise, Edges and Gradient- based Edge Detectors Image Gradients - Computing the Image Gradient, Gradient Based Edge and Corner Detection. Filters as Templates - Normalized Correlation and Finding Patterns.	11

	Machine Learning for Computer Vision :-	
	Machine Learning - Introduction, Dataset for Machine Perception- Labelled	
	and Unlabelled Data, Basics of Classification and Clustering, Multi-Class	
	Perspective (Recap)	
3	Machine Learning for Computer Vision -Machine Learning -Deep Learning	11
0	Use Cases.	11
	Machine Learning Models for Vision - Image Vision-Pretrained Model,	
	Transfer Learning, Fine-Tuning, Convolutional Networks, Convolutional	
	Filters, Stacking Convolutional Layers, Pooling Layers - AlexNet, VGG19, ,	
	Modular architecture - ResNet, Neural Architecture Search Design - NASNet	
	Segmentation and Object Detection :-	
	Segmentation Using Clustering Methods - Human vision- Grouping and	
	Gestalt, Applications- Shot Boundary Detection, Background Subtraction,	
	Image Segmentation by Clustering Pixels- Simple Clustering Methods,	
4	Clustering and Segmentation by K-means	11
	Object detection - YOLO, Segmentation-Mask R-CNN and Instance	
	Segmentation, U-Net and Semantic Segmentation, Model Quality Metrics	
	A case study to compare performance of various models on a suitable	
	dataset.	

Suggestion on Project Topics

Real life problems in the domain of computer vision may be identified, solved and implemented using different algorithms. A few suggestions are given below.

- Build a system capable of detecting and classifying objects (like pedestrians, vehicles, traffic signs) in real-time from video feeds in autonomous vehicles. You can explore different algorithms like YOLO, R-CNN etc.
- 2. Develop a machine learning model to automatically detect and classify diseases from medical images, such as X-rays, MRIs, or CT scans. This could be applied to specific conditions like detecting tumors, pneumonia, or diabetic retinopathy.
- 3. Develop a machine learning model that utilizes edge detection and linear filtering techniques to enhance object detection and recognition in images.

Course Assessment Method (CIE: 60 marks, ESE: 40 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Project	Internal Ex-1	Internal Ex-2	Total
5	30	12.5	12.5	60

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• 2 questions will be given from each module,	
module.	out of which 1 question should be answered.	
• Total of 8 Questions,	Each question can have a maximum of 2	40
each carrying 2 marks	subdivisions. Each question carries 6 marks.	
(8x2 =16 marks)	(4x6 = 24 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the basic concepts and terminologies like Camera Calibration, Stereopsis in computer vision	K2
CO2	Use filters for feature extraction and finding patterns.	K3
CO3	Build different machine learning models for computer vision.	K3
CO4	Implement and analyse segmentation and object detection models	K4

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3								2
CO2	3	3	3	3	3							2
CO3	3	3	3	3	3							2
CO4	3	3	3	3	3							2

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Computer vision: A Modern Approach	Forsyth David and Jean Ponce	Pearson	2/e, 2012		
2	Emerging Topics in Computer Vision	Gerald Medioni and Sing Bing Kang	Prentice Hall	1/e, 2004		
3	Practical Machine Learning for Computer Vision: End-to End Machine Learning for Images	Valliappa Lakshmanan, Martin Görner, and Ryan Gillard	O'Reilly	1/e, 2021		

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Computer Vision: Algorithms and Applications	Richard Szeliski	Springer	1/e, 2011		
2	Image Segmentation: Principles, Techniques, and Applications	Tao Lei and Asoke K. Nandi	Wiley	1/e, 2022		
3	Deep Learning in Computer Vision Principles and Applications	Mahmoud Hassaballah and Ali Ismail Awad,	CRC Press	1/e, 2020		

Video Links (NPTEL, SWAYAM)					
Module No.	Link ID				
1	Computer Vision and Image Processing - Fundamentals and Applications by Prof. M. K. Bhuyan at IIT Guwahati				
	https://onlinecourses.nptel.ac.in/noc25_ee39/preview				
2, 3	https://onlinecourses.nptel.ac.in/noc19_cs58/preview				
4	Deep Learning for Computer Vision by Prof. Vineeth N Balasubramanian at IIT Hyderabad				
	https://onlinecourses.nptel.ac.in/noc21_cs93/preview				

L: Lecture	R: Project (1 Hr.), 2 Faculty Members				
(3 Hrs.)	Tutorial	Practical	Presentation		
Lecture delivery	Project identification	Simulation/ Laboratory Work/ Workshops	Presentation (Progress and Final Presentations)		
Group discussion	Project Analysis	Data Collection	Evaluation		
Question answer Sessions/ Brainstorming Sessions	Analytical thinking and self-learning	Testing	Project Milestone Reviews, Feedback, Project reformation (If required)		
Guest Speakers (Industry Experts)	Case Study/ Field Survey Report	Prototyping	Poster Presentation/ Video Presentation: Students present their results in a 2 to 5 minutes video		

Sl. No	Evaluation for	Allotted Marks
1	Project Planning and Proposal	5
2	Contribution in Progress Presentations and Question Answer Sessions	4
3	Involvement in the project work and Team Work	3
4	Execution and Implementation	10
5	Final Presentations	5
6	Project Quality, Innovation and Creativity	3
	Total	30

Assessment and Evaluation for Project Activity

1. Project Planning and Proposal (5 Marks)

- Clarity and feasibility of the project plan
- Research and background understanding
- Defined objectives and methodology

2. Contribution in Progress Presentation and Question Answer Sessions (4 Marks)

- Individual contribution to the presentation
- Effectiveness in answering questions and handling feedback

3. Involvement in the Project Work and Team Work (3 Marks)

- Active participation and individual contribution
- Teamwork and collaboration

4. Execution and Implementation (10 Marks)

- Adherence to the project timeline and milestones
- Application of theoretical knowledge and problem-solving
- Final Result

5. Final Presentation (5 Marks)

- Quality and clarity of the overall presentation
- Individual contribution to the presentation
- Effectiveness in answering questions

6. Project Quality, Innovation, and Creativity (3 Marks)

- Overall quality and technical excellence of the project
- Innovation and originality in the project

Creativity in solutions and approaches

SOFTWARE PROJECT MANAGEMENT

(Common CS/CD/CM/CR/CA/AD/AM)

Course Code	PECST521	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hr.30 Min.
Prerequisites (if any)	PECST411	Course Type	Theory

Course Objectives:

- 1. To learn the techniques to effectively plan, manage, execute, and control projects within time and cost targets with a focus on Information Technology and Service Sector.
- 2. To learn agile project management techniques such as Scrum and DevOps.

Module	Syllabus Description		
INO.			
	Project scheduling and feasibility study : -		
	Project Overview and Feasibility Studies - Identification, Market and Demand		
1	Analysis, Project Cost Estimate, Financial Appraisal; Project Scheduling -	o	
L	Project Scheduling, Introduction to PERT and CPM, Critical Path Calculation,	0	
	Precedence Relationship, Difference between PERT and CPM, Float		
	Calculation and its importance, Cost reduction by Crashing of activity.		
	Resource Scheduling, Cost Control and Project management Features :-		
2	Cost Control and Scheduling - Project Cost Control (PERT/Cost), Resource	o	
2	Scheduling & Resource Levelling; Project Management Features - Risk	8	
	Analysis, Project Control, Project Audit and Project Termination.		
	Agile Project Management :-		
	Agile Project Management - Introduction, Agile Principles, Agile		
3	methodologies, Relationship between Agile Scrum, Lean, DevOps and IT	9	
	Service Management (ITIL;. Other Agile Methodologies - Introduction to XP,		
	FDD, DSDM, Crystal.		

	Scrum and DevOps in project management :-	
4	Scrum - Various terminologies used in Scrum (Sprint, product backlog, sprint	
	backlog, sprint review, retro perspective), various roles (Roles in Scrum), Best	
	practices of Scrum, Case Study; DevOps - Overview and its Components,	11
	Containerization Using Docker, Managing Source Code and Automating	11
	Builds, Automated Testing and Test-Driven Development, Continuous	
	Integration, Configuration Management, Continuous Deployment, Automated	
	Monitoring, Case Study.	
		1

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3	00
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand how effectively plan, and schedule projects within time and cost targets	K2
CO2	Apply project estimation and evaluation techniques to real world problem	К3
CO3	Discuss different Agile Project Methodologies	K2
CO4	Apply various SCRUM practices in project management.	K3
CO5	Demonstrate the techniques used in DevOps.	K3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3								2	2
CO2	3	3	3								2	2
CO3	3	3	3								2	2
CO4	3	3	3								2	2
CO5	3	3	3								2	2

Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Succeeding with Agile: Software Development Using Scrum	Mike Cohn	Addison-Wesley	1/e, 2009					

	Reference Books										
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year							
1	Agile Product Management with Scrum	Roman Pichler	Addison-Wesley	1/e, 2010							
2	Agile Project Management with Scrum	Ken Schwaber	Microsoft Press	1/e, 2004							

Video Links (NPTEL, SWAYAM)							
Sl. No.	Link ID						
1	https://archive.nptel.ac.in/noc/courses/noc19/SEM2/noc19-cs70/						
2	https://www.youtube.com/watch?v=TPEgII1OilU						
3	https://www.youtube.com/watch?v=7Bxdds2siU8						

EXPERT SYSTEMS

Course Code	PECMT522	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- **1.** To impart knowledge about how expert systems can solve complex problems by reasoning through bodies of knowledge.
- 2. To explore the different stages in the development of an expert system.

Module No.	Syllabus Description	Contact Hours
1	Expert Systems:- Introduction, Characterization and History of Expert Systems, Programming Languages and Expert System Tools, Knowledge Acquisition Problems, Knowledge Acquisition with Specialized Programming Environments, Architecture of Expert Systems, Use and Usability of Expert Systems, Potential Benefits and Modes of Use, Expert Systems as Knowledge Media, Criteria for Expert System Domains. Knowledge representations, Productions, Semantic Nets, Schemata, Frames, Logic and Sets, Propositional Logic, First Order Predicate Logic, Universal Quantifier, Existential Quantifier.	9
2	Methods of inference:- Trees, lattices, and graphs, state and problem spaces, AND-OR trees and goals, Deductive logic and syllogisms, methods of inference, rules of inference, limitations of propositional logic, logic systems, resolution, resolution systems and deduction, shallow and causal reasoning, forward and backward chaining.	9
3	Uncertainty, Type of Errors, Errors and Induction, Classical Probability, Experimental and Subjective Probabilities, Compound Probability, Conditional Probability, Hypothetical Reasoning and Backward Induction,	9

	Temporal Reasoning and Markov Chains, Odds of Belief, Sufficiency and	
	Necessity, Uncertainty in Inference Chains, Implications of Combining	
	Evidence, Inference Nets, Propagation of Probabilities.	
	How to Select an Appropriate Problem, The Stages in the Development of an	
	Expert System, Types of Errors to Expect in the Development Stages,	
4	Software Engineer and Expert Systems, The Expected Life Cycle of an Expert	9
	System, Life Cycle Model.	
	Expert System Examples - MYCIN, DART.	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the difference between expert systems and conventional systems and how knowledge is represented in expert systems	K2
CO2	Use different methods of inference to solve problems using expert systems.	К3
CO3	Solve problems by applying methods for reasoning under uncertainty.	K3
CO4	Choose an appropriate problem for expert systems and understand the different stages in the development of an expert system.	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									2
CO2	3	3	3	3								2
CO3	3	3	3	3								2
CO4	3	3	3									2

Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Expert Systems - Principles and Programming.	J. Giarratano and G. Riley	PWS Publishing Company	4/e, 2004			
2	Systematic Introduction to Expert Systems	Frank Puppe	Springer	1/e, 1993			
3	Introduction to Expert Systems	Peter Jackson	Addison Wesley Longman	3/e, 1999			

Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Expert systems: Design and Development	Durkin, J.	Macmillan	1/e, 1994		
2	The Engineering of Knowledge- Based Systems	Gonzalez and D. Dankel	Prentice Hall	1/e, , 1994		

	Video Links (NPTEL, SWAYAM)				
Module No.	Link ID				
1	https://www.youtube.com/watch?v=nE5c5w4aizU				
2	https://www.youtube.com/watch?v=4D2lT3efLPE				
3	https://www.youtube.com/watch?v=11KsSiEsJ18				
4	https://www.youtube.com/watch?v=lyrFcgqFmIk&t=232s				

FUZZY SYSTEMS

Course Code	PECMT523	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To understand the concepts of fuzziness and its use in building better solutions to problems.
- **2.** To understand the basic concepts of fuzzy sets, fuzzy relations, fuzzy logic and building of fuzzy approximation-based solutions.

Module No.	Syllabus Description					
1	Basic Fuzzy Set Theory :- Introduction - Uncertainty, Imprecision and Vagueness. Crisp vs Fuzzy sets. Representation of Fuzzy sets. Membership Functions – Types, Basic operations - dilation, concentration, normalization, Linguistic hedges. Properties of fuzzy set - Level Sets - Alpha cut representation. Operations on fuzzy sets- fuzzy complement, fuzzy intersection, fuzzy union, aggregation operations	9				
2	Fuzzy Relations :- Operations on Fuzzy relations: union, intersection, complement, cartesian product. Fuzzy composition- Max- min, Max – product. Extension Principle- Fuzzy arithmetic – fuzzy numbers, arithmetic operations on fuzzy numbers. Fuzzy Reasoning – Generalized Modus Ponens (GMP) and Generalized Modus Tollens (GMT).	9				

	Fuzzification and Defuzzification Methods :-	
	Fuzzy inference - Zadeh rule, Mamdani rule. Development of membership	
	Functions – Intuition, Inference, Rank ordering, Inductive reasoning.	
3	Defuzzification to Scalars - Max membership principle, Centroid method,	9
	Weighted average method, Mean max membership, Center of sums, Center of	
	largest area, First (or last) of maxima.	
	Fuzzy Inference Systems :-	
	Approximate Reasoning, Fuzzy (Rule-Based) Systems - Multiple conjunctive	
4	antecedents, Multiple disjunctive antecedents, Aggregation of fuzzy rules,	9
	Graphical Techniques of Inference. Fuzzy Controllers -Mamdani FIS, Larsen	
	Model.	
1		

Course Assessment Method (CIE: 40 marks, ESE: 60 marks) Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain fuzzy logic based problem solving	K2
CO2	Summarize the concepts of crisp sets, crisp relations, crisp logic with fuzzy sets, fuzzy relations and fuzzy logic	К3
CO3	Develop fuzzy systems by selecting appropriate membership functions, fuzzification and defuzzification methods	К3
CO4	Develop solutions using graphical and rule-based methods	K3
CO5	Make use of fuzzy logic inference to solve real world problems	K3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	1									2
CO2	3	1	1									2
CO3	3	3	2	1								2
CO4	3	3	2	1								2
CO5	3	3	2	2	1							2

Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Fuzzy Logic with Engineering Applications	Timothy J. Ross	John Wiley and Sons	3/e, 2010		
2	Fuzzy Sets and Fuzzy Logic: Theory and Applications	George J. Klir and Bo Yuan	Pearson	1/e, 2015		

Reference Books							
Sl. No	Title of the BookName of the Author/s		Name of the Publisher	Edition and Year			
1	Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems	Guanrong Chen, Trung Tat Pham	CRC Press	1/e, 2019			
2	Discrete Mathematics and Its Applications with Combinatorics and GraphTheory	Kenneth H. Rosen	MGH	7/e, 2011			
3	Discrete Mathematical Structures with Applications to Computer Science	Trembly J.P, Manohar R	TataMc Graw Hill	1/e, 2003			
4	Discrete Mathematical Structures	Bernard Kolman, Robert C. Busby, Sharan Cutler Ross,	Pearson	1/e, 2003			

Video Links (NPTEL, SWAYAM)			
Module No.	Link ID		
1	https://nptel.ac.in/courses/108104157		

DATA COMPRESSION

(Common to CS/CD/CM/CR/AD/AI/AM/CN/CI)

Course Code	PECST524	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To introduce students to basic applications, concepts, and techniques of Data Compression.
- **2.** To develop skills for using recent data compression software to solve practical problems in a variety of disciplines.

Module	Syllabus Description			
No.	Synabus Description			
1	 Basic Compression Techniques :- Data Compression Approaches - Variable-Length Codes, Run-Length Encoding, Space - Filling Curves, Dictionary-Based Methods, Transforms, Quantization. Huffman Encoding - Huffman Decoding, Adaptive Huffman Coding, Facsimile Compression. Run Length Encoding (RLE), RLE Text compression, Dictionary based Coding- LZ77, LZ78, LZW and Deflate: Zip and Gzip compression. 	10		
2	Advanced Techniques :- Arithmetic Coding - The Basic Idea, Implementation,Underflow; Image Compression- Introduction, Approaches to Image Compression, History of Gray Codes, Image Transforms, Orthogonal Transforms, The Discrete Cosine Transform, Intermezzo: Statistical Distributions, JPEG, Human Vision and Color, The Wavelet Transform, Filter Banks, WSQ, Fingerprint Compression	10		
3	Video Compression :-	8		

	Video Compression - Analog video, Digital Video, Motion Compensation. MPEG standards MPEG, H.261	
4	Audio Compression :- Audio Compression - Companding, The Human Auditory System, Heinrich Georg Barkhausen, Linear Prediction, μ-Law and A-Law Companding, Shorten	8

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3	00
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Describe the fundamental approaches in data compression techniques	K2
CO2	Illustrate various classical data compression techniques	K3
CO3	Illustrate various text and image compression standards	К3
CO4	Describe the video compression mechanisms to reduce the redundancy in video	K3
CO5	Understand the fundamental principles of audio data compression	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3										3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3									3
CO5	3	3										3

	Text Books					
SL No	Title of the Book	Name of the	Name of the	Edition		
51. 110		Author/s	Publisher	and Year		
1	A Concise Introduction to Data Compression	David Salomon	Springer	1/e, 2008		
2	Data compression: The Complete Reference	David Salomon	Springer	3/e, 2004		
3	Introduction to Data Compression	Khalid Sayood	Morgan Kaufman	1/e, 2003		

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Fractal and wavelet Image Compression techniques	Stephen Welstead,	PHI	1/e, 1999		
2	Multimedia System	Sleinreitz	Springer	1/e, 2006		
3	The Data Compression Book	Mark Nelson, Jean-loup Gailly	BPB Publications	1/e, 1996		

Video Links (NPTEL, SWAYAM)					
Module No.	Link ID				
1	An Introduction to Information Theory by Prof. Adrish Banerjee zt IIT Kanpur https://onlinecourses.nptel.ac.in/noc22_ee49/preview				
DIGITAL SIGNAL PROCESSING

(Common to CS/CM/CA/AM)

Course Code	PECST526	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	Signals and Systems	Course Type	Theory

Course Objectives:

- 1. To teach the concept of DFT and apply it for filtering data sequences.
- 2. To educate on the algorithms for complexity reduction in the computation of DFT.
- **3.** To teach the theory of FIR and IIR filters and to design FIR filters.
- **4.** To get exposed to the basic idea of some of the important techniques for designing efficient VLSI architectures for DSP.

SYLLABUS

Module	Syllabus Description	
No.	Synabus Description	Hours
1	Definition of a digital signal processing system, Sampling, Sampling rate, DFT and IDFT (Properties of DFT). Linear Convolution using Circular Convolution, Convolution of long data sequences- Overlap add method, overlap save method. Linear filtering methods based on DFT – FFT (DIT-FFT only) – efficient computation of the DFT of a 2N point real sequences – correlation – use of FFT in linear filtering and correlation, Symmetries in the DFT	9
2	Types of transfer functions- Ideal filters, Zero phase and linear phase transfer functions, Types of linear phase FIR transfer functions; Simple digital filters: Simple FIR digital filters (Low pass and high pass), Simple IIR digital filters (Low pass and high pass), All pass and minimum phase transfer function Design of FIR filter : window based design (Rectangular, Hamming, Hanning windows). Applications of DSP-Spectral analysis of sinusoidal signals.	8

	Realization structures for FIR filters- direct, cascade, parallel. IIR Filter				
	realization structures (Direct form I, II, cascade and Parallel and transposed				
3	structures); Computational accuracy in DSP implementation- Number formats				
	for signals and coefficients in DSP systems, Dynamic range and precision,				
	Sources of error in DSP implementation - A/D conversion error, DSP				
	computational error, D/A Conversion error.				
	FFT and FIR Filter realization on a fixed point processor -finite wordlength				
	effects - Quantization, rounding and truncation, overflow and scaling.				
	DSP Algorithm representations, data flow, control flow, signal flow graphs,				
	block diagrams - Loop bound, iteration bound, critical path - Pipelining,				
	parallel processing, low power architectures - Retiming, folding and unfolding				
	techniques, applications.				
	Hands-on : -				
4	• FPGA based hardware realization of the FFT algorithm, circular	10			
-	convolution, IIR and FIR filter structures using iVerilog.	10			
	• To realize different DSP algorithms including basic multiply				
	accumulation and shifting operations on a fixed point processor.				
	• Analyze the effect of the finite wordlength by implementing the FFT				
	algorithm and FIR filters by using fixed point coefficient				
	representation in different formats like Q7, Q15 etc.				
	• Design an FIR low pass filter using MATLAB/SCILAB and check				
	how it filters a speech signal by recording it and playing the result.				

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0
carrying 3 marks	• Each question can have a maximum of 3	00
	subdivisions.	
(8x3 =24 Marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the concept of DFT and apply it for determining the spectral information of data sequences.	K2
CO2	Apply algorithms for complexity reduction in the computation of DFT.	K3
СО3	Use the theory of FIR and IIR filters and be able to design FIR filters using the window method.	К3
CO4	Build the IIR and FIR filter transfer functions using suitable structures	K3
C05	Identify the effect of finite wordlength on DSP algorithm implementation.	К3
CO6	Utilize the low power architectures for implementing the DSP algorithms	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									2
CO2	3	3	3									2
CO3	3	3	3	3								2
CO4	3	3	3	3								2
CO5	3	3	3	3								2
CO6	3	3	3				3					2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Digital Signal Processing [Modules 1,2,3]	S. Salivahanan	McGraw Hill	10/e, 2019		
2	Digital Signal Processing: A Computer - Based Approach [Modules 2]	Sanjit K.Mitra	McGraw Hill	4/e, 2013		
3	VLSI Signal Processing Systems, Design and Implementation [Module 4]	Keshab K. Parhi	Wiley	1/e, 2007		

Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Digital Signal Processing	John G. Prokais, Dimitris K Manolakis	Pearson	4/e, 2007		
2	Introduction to Digital Signal Processing	Johnny R Johnson	Pearson	1/e, 2015		
3	Mathematics of the Discrete Fourier Transform (DFT): with Audio Applications	Mathematics of the Discrete Fourier Transform (DFT): with Julius O. Smith III Audio Applications		2/e, 2007		
4	Digital Signal Processing : Fundamentals, Techniques and Applications	Juan Zhang	Nova Science Publishers	1/e, 2016		
5	FastFourierTransformAlgorithmsforParallelComputers (Vol 2)	Daisuke Takahashi	Springer	1/e,		

Video Links (NPTEL, SWAYAM)				
Sl. No.	Link ID			
1	https://archive.nptel.ac.in/courses/108/101/108101174/			
2	https://methodist.edu.in/web/uploads/files/DSP%20NOTES.pdf			

Course Code	PECMT527	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

INTRODUCTION TO COMPILER DESIGN

Course Objectives:

- 1. To give a comprehensive understanding of the compiler construction process, including lexical analysis, parsing, semantic analysis, code generation, and optimization.
- **2.** To enable the learner to design, implement, and test a compiler for a simple language, utilizing tools including LEX and YACC for lexical analysis and parsing, respectively.
- **3.** To learn to use code optimization techniques to improve the efficiency of generated code.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
	Compilers - The Translation Process, Major Data Structures, Other	
	Issues, Bootstrapping and Porting.	
	Scanning Process - Finite state automata and Regular expressions	
1	(Basic idea only).	10
	Use of LEX to generate automatic scanners (basic idea only).	
	Parsing Process – Context free Grammars (Basic idea only), Parse Trees	
	and Abstract Syntax Trees, Ambiguity.	
	Top-down Parsing - Recursive Descent, LL(1), First and Follow.	
	Error Recovery in Top-down Parsers.	
2	Bottom-up Parsing - Overview of Bottom -up parsing, Shift-reduce	10
	parser, LR(0) Items and LR(0) Parsing, SLR(1) parsing, General LR(1)	
	and LALR(1) Parsing.	
	Semantic Analysis: Attributes and attribute grammars. Dependency	
3	graphs and Evaluation order, Synthesized and Inherited attributes.	8
	Intermediate code generation – Three address code, $P - code$.	

	Intermediate code as a synthesized attribute.	
	Generation of Target code from intermediate code – Code generation of	
	Data structure references- address calculation, array references, if and	
	while statements.	10
4	Code Optimization Techniques: Principal sources of code optimization,	10
	Classification of optimizations, Data Structures and Implementation	
	Techniques for Optimizations.	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5 15		10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome				
CO1	Explain lexical analysis techniques to build a scanner for a given language specification.	K2			
CO2	Construct parse trees for input programs using parsing algorithms and detect syntactic errors.	К3			
CO3	Develop semantic analysis techniques to check program correctness.	К3			
CO4	Develop intermediate code representations by applying intermediate code generation techniques.	К3			
CO5	Utilize code optimization strategies to improve performance of the machine code.	K3			

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									2
CO2	3	3	3									2
CO3	3	3	3									2
CO4	3	3	3									2
CO5	3	3	3									2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Compiler Construction - Principles and Practice	Kenneth C Louden	Cengage	1/e, 2007				

Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Compilers – Principles Techniques and Tools	Aho A.V., Ravi Sethi and D. Ullman.	Addison Wesley,	2/e, 2013			
2	Engineering a Compiler	Keith D. Cooper Linda Torczon	Morgan Kaufman	3/e, 2023			
3	ModernCompilerImplementation in C	Andrew W. Appel	Cambridge University Press	2004			
3	The Theory and Practice of Compiler Writing	Tremblay and Sorenson	Tata McGraw Hill	1/e, 1984			
4	System Programming and Operating Systems	D. M. Dhamdhere	Tata McGraw Hill	2/e, 2001			

Video Links (NPTEL, SWAYAM)					
Module No.	Link ID				
1-4	https://onlinecourses.nptel.ac.in/noc20_cs13/preview				

Course Code	PECMT528	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

CONCEPTS IN SOCIAL NETWORK ANALYSIS

Course Objectives:

- 1. To enable the learners to understand the concepts of semantic web and related applications.
- 2. To impart the idea of knowledge representation using ontology.
- **3.** To explore human behaviour in social web and related communities and various forms of social network visualization.

SYLLABUS

No.	Syllabus Description	Contact Hours
1	Introduction:- Introduction to Semantic Web – Limitations of Current Web, Development of Semantic Web, Emergence of the Social Web; Social Network Analysis – Development of Social Network Analysis, Key Concepts and Measures in Social Network Analysis; Electronic Sources for Network Analysis – Electronic Discussion Networks, Blogs and Online Communities, Web-Based Networks Applications of Social Network Analysis	8
2	Modelling, Aggregating and Knowledge Representation:- Ontology and Their Role in Semantic Web – Ontology-Based Knowledge Representation; Ontology Languages for the Semantic web – Resource Description Framework, Web Ontology Language; Modelling and Aggregating Social Network Data – State-of-the-art in Network Data Representation, Ontological Representation of Social Individuals, Ontological Representation of Social Individuals, Ontological Representation of Social Individuals, Ontological Relationships, Aggregating and Reasoning with Social Network Data, Advanced Representations	8

	Extraction and Mining Communities in Web Social Networks:-		
	Extracting evolution of Web Community from a Series of Web Archive,		
3	Detecting Communities in Social Networks, Definition of Community,		
	Evaluating Communities, Methods for Community Detection and Mining,		
	Applications of Community Mining Algorithms, Tools for Detecting	8	
	Communities Social Network Infrastructures and communities,		
	Decentralized Online Social Networks, Multi-Relational Characterization of		
	Dynamic Social network communities.		
	Predicting Human Behaviour for Social Communities:-		
	Understanding and Predicting Human Behavior for Social Communities, User		
	Data Management, Inference and Distribution, Enabling New Human		
	Experiences, Reality Mining, Context-Awareness, Privacy in Online Social		
	Networks, Trust in Online Environment, Trust Models Based on Subjective		
	Logic, Trust Network Analysis, Trust Transitivity Analysis, Combining		
	Trust and Reputation, Trust Derivation Based on Trust Comparisons, Attack		
4	Spectrum and Counter Measures.	12	
	Visualization of Social Networks:-		
	Graph theory, Centrality, Clustering, Node-Edge Diagrams, Matrix		
	Representation, Visualizing Online Social Networks, Visualizing Social		
	Networks with Matrix-Based Representations, Matrix and Node-Link		
	Diagrams, Hybrid Representations.		

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5 15		10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome						
CO1	Design and develop semantic web for the analysis of social networks.	К3					
CO2	Demonstrate how knowledge can be represented using ontology.	К3					
CO3	Explain how human behaviour can be predicted for social communities.	K2					
CO4	Use various mechanisms to visualize social networks.	К3					

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									2
CO2	3	3	3									2
CO3	3	3	3									2
CO4	3	3	3									2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books										
Sl. No	Title of the Book	Title of the BookName of the Author/s		Edition and Year							
1	Social Networks and the Semantic Web	Peter Mika	Springer /b S Publication	1/e, 2010							
2	Handbook of Social Network Technologies and Applications	Borko Furht	Springer-Verlag New York Inc.	1/e, 2010							

Reference Books										
SI. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Web Mining and Social Networking – Techniques and applications	Guandong Xu ,Yanchun Zhang and Lin Li	Springer-Verlag New York Inc.	1/e, 2011						
2	Social information Retrieval Systems: Emerging Technologies and Applications for Searching the Web Effectively	cial information Retrieval stems: Emerging chnologies and Applications Searching the Web Fectively								
3	Collaborative and Social Information Retrieval and Access: Techniques for Improved user Modelling	Max Chevalier, Christine Julien and Chantal Soulé- Dupuy	Information Science Reference	1/e, 2009						
4	The Social Semantic Web	John G. Breslin,Social Semantic WebAlexander Passant andStefan Decker								

Video Links (NPTEL, SWAYAM)						
Sl. No.	Link ID					
1	https://onlinecourses.nptel.ac.in/noc22_cs117/preview					

DATA MINING

(Common to CS/CD/CM/CA/AM)

Course Code	PECST525	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	5/3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To provide a thorough understanding of the key processes and concepts involved in data mining and data warehousing within application domains
- 2. To enable students to understand the different data preprocessing techniques, fundamentals and advanced concepts of classification, clustering, association rule mining, text mining and web mining, and apply these techniques in real-world scenarios

SYLLABUS

Module	Syllabus Description						
No.	Synabus Description	Hours					
	Data Mining Fundamentals :- Data Mining - concepts and applications, Knowledge Discovery in Database Vs						
1	Data mining, Architecture of typical data mining system, Data Mining Functionalities						
	Data warehouse - Differences between Operational Database Systems and Data Warehouses, Multidimensional data model- Warehouse schema, OLAP Operations, Data Warehouse Architecture						
2	Data Preprocessing :- Data Preprocessing - Need of data preprocessing, Data Cleaning- Missing values,	9					

	Noisy data, Data Integration and Transformation Data Reduction - Data cube aggregation, Attribute subset selection, Dimensionality reduction, Numerosity reduction, Discretization and concept hierarchy generation.	
3	Classification And Clustering :- Classification - Introduction, Decision tree construction principle, Information Gain, Gini index, Decision tree construction algorithm - ID3, Neural networks, back propagation, Evaluation measures - accuracy, precision, recall, F1 score Clustering - Introduction to clustering, distance measures, Clustering Paradigms, Partitioning Algorithm - k means, Hierarchical Clustering, DBSCAN	9
4	Association Rule Analysis And Advanced Data Mining : - Association Rule Mining - Concepts, Apriori algorithm, FP Growth Algorithm Web Mining - Web Content Mining, Web Structure Mining- Page Rank, Web Usage Mining- Preprocessing, Data structures, Pattern Discovery, Pattern Analysis Text Mining - Text Data Analysis and information Retrieval, Basic measures for Text retrieval, Text Retrieval methods, Text Indexing Technique	10

Criteria for Evaluation(Evaluate and Analyse): 20 marks

Students must be asked to identify problems involving large datasets and identify the right solution from the concepts already learned. A comparison of the results with a similar approach also need to be performed to assess the Knowledge Level 5.

End Semester Examination Marks (ESE):

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• 2 questions will be given from each module,	
module.	out of which 1 question should be answered.	
• Total of 8 Questions,	Each question can have a maximum of 3	60
each carrying 3 marks	subdivisions. Each question carries 9 marks.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Bloom's Knowledge Level (KL)					
CO1	Understand the key process of data mining and data warehousing concepts in application domains.	К2				
CO2	CO2 Apply appropriate pre-processing techniques to convert raw data into suitable format for practical data mining tasks					
СО3	CO3 Illustrate the use of classification and clustering algorithms in various application domains					
CO4	CO4 Comprehend the use of association rule mining techniques					
CO5	Explain advanced data mining concepts and their applications in emerging domains	K2				

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2										2
CO2	3	3	3	3	2							2
CO3	3	3	3	3	2							2
CO4	3	3	3	3	2							2
CO5	2	2										2

	Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Data Mining Concepts and Techniques	Jaiwei Han, Micheline Kamber	Elsevier	3/e, 2006						
2	Data Mining: Introductory and Advanced Topics	Dunham M H	Pearson Education	1/e, 2006						

	Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Introduction to Data Mining	Pang-Ning Tan, Michael Steinbach	Addison Wesley	1/e, 2014					
2	Data Mining: Concepts, Models, Methods, and Algorithms	Mehmed Kantardzic	Wiley	2/e, 2019					

Video Links (NPTEL, SWAYAM)								
Module	Module Link ID							
No.								
1	https://youtu.be/ykZUGcYWg?si=qiqynQyjI1sNNiHE							
2	https://youtu.be/NSxEiohAH5o?si=ZIJHMiRvpFcNQNMA							
3	https://youtu.be/VsYKqOokgaE?si=rgndBZqpzB29LUGg							
4	https://youtu.be/N_whCVtfL9M?si=VPMH9NP4vdAaiuPe							

OPERATING SYSTEM CONCEPTS

Course Code	PEAMT595	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	5/3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To introduce the structure of a typical operating system and its core functionalities
- 2. To impart to the students, a practical understanding of OS implementation nuances based on the Linux operating system

Module No.	le Syllabus Description						
	Introduction to Operating Systems: Operating System Services, Overview						
	of Operating Systems and Kernels, Linux Versus Classic Unix Kernels						
	Process concepts: Process Creation, Process States, Data Structures, Process						
	API, Sharing processor among processes - user and kernel modes, context						
	switching, System boot sequence						
	Case study: Linux kernel process management						
1	Threads and Concurrency: Concept of a thread, Multithreading benefits,						
-	Multithreading models	,					
	Case study: The Linux Implementation of Threads						
	Process scheduling: Concepts and basic algorithms, The Multilevel Feedback						
	Queue: Basic Rules						
	Case study: The Linux Completely Fair Scheduler (CFS) (Implementation						
	with RB trees not required), The Linux Scheduling Implementation,						
	Preemption and Context Switching						

	Concurrency and Synchronization - Basic principles, Mechanisms - Locks:	
	The Basic Idea, Building Spin Locks with Test-And-Set, Compare and Swap,	
	Using Queues: Sleeping Instead Of Spinning, Semaphores - Definition, Binary	
	Semaphores, The Producer/Consumer (Bounded Buffer) Problem and its	
2	solution using semaphores, Reader-Writer Locks	
_	Case study: Linux Kernel Synchronization Methods - Spin Locks, Semaphores,	
	Mutexes	9
	Concurrency: Deadlock and Starvation - Deadlock Characterization,	
	Deadlock Prevention and Avoidance, Deadlock Detection and recovery,	
	Dining Philosophers Problem and its solution	
	Memory management - Address Space, Memory API, Address Translation -	
	An Example, Dynamic (Hardware-based) Relocation, Segmentation:	
	Generalized Base/Bounds, Address translation in segmentation, Support for	
	Sharing	
3	Virtual memory - Paging: Introduction, page tables and hardware support,	9
	TLBs, Example: Accessing An Array, - TLB hits and misses, Handling TLB	
	misses, TLB structure, Reducing the page table size	
	Going beyond physical memory - Swap space, page fault and its control	
	flow, page replacement policies, Thrashing	
	I/O system: Modern System architecture, Programmed I/O, Interrupts, DMA,	
	Device interaction methods, The Device Driver	
	Hard disk: Geometry, disk scheduling	
	Case study: Linux I/O schedulers - Elevator, Complete Fair Queuing	
	Files and Directories: The File System Interface - File descriptor, reading and	
4	writing files (sequential and random access), Removing files - Hard links and	9
	Symbolic links, Creating, reading and deleting directories, Permission bits and	
	Access Control Lists, Mounting a file system	
	File Organization: The Inode, The Multi-Level Index	
	Case study: VFS Objects and Their Data Structures - The Inode Object, Inode	
	Operations	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Internal Ex	Evaluate	Analyse	Total
5	15	10	10	40

Criteria for Evaluation(Evaluate and Analyse): 20 marks

Example use cases for Evaluate level

Evaluating Linux vs. Windows for a corporate server environment

• Criteria for evaluation can be security, performance and support options. Provide a recommendation based on the evaluation.

Scheduling Algorithm Comparison

• Evaluate the Linux Completely Fair Scheduler (CFS) in comparison to other process scheduling algorithms like the Multilevel Feedback Queue (MLFQ). Assess the strengths and weaknesses of each in terms of fairness, efficiency, and complexity.Justify the choice of a scheduling algorithm for different types of workloads and system requirements.

Memory Management Strategies

• Evaluate the trade-offs between different memory management strategies in terms of performance and resource utilization. Assess the memory management strategies of Linux, focusing on virtual memory, paging, and TLB handling. Compare these strategies with those used in another operating system.

Example use cases for Analyse level

Comparison of OS

• Compare various operating systems (e.g., Windows, Linux, macOS) in terms of their architecture, features, and use cases.Examine different features such as security mechanisms, file systems, and user interfaces. Analyse their strengths and limitations.

Deadlock Analysis

• Analyse a scenario involving deadlock in a system. Use concepts such as deadlock characterization, prevention, avoidance, and detection. Provide an analysis of how such issues are managed in Linux.

Concurrency and Synchronization Mechanisms Analysis

• Analyse how Linux handles concurrency and synchronization using mechanisms such as spin locks, semaphores, and mutexes. Compare these mechanisms with theoretical models and real-world implementations.

End Semester Examination Marks (ESE):

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks 	2 questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. Each question carries 9 marks.	60
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Apply the concepts of process management and process scheduling mechanisms employed in operating systems.	К3
CO2	Analyze various process synchronization mechanisms employed in operating systems.	K4
CO3	Evaluate deadlock prevention and avoidance mechanisms in operating systems.	К5
CO4	Select various memory management techniques in operating systems.	К3
CO5	Identify the storage management in operating systems.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3								3
CO2	3	3	3	3								3
CO3	3	3	3	3								3
CO4	3	3	3	3								3
CO5	3	3	3	3								3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Operating Systems: Three Easy Pieces	Andrea Arpaci-Dusseau, RemziArpaci-Dusseau	CreateSpace	1/e, 2018			
2	Linux Kernel Development	Robert Love	Pearson	3/e, 2018			
3	Operating System Concepts	Abraham Silberschatz, Peter B. Galvin, Greg Gagne	Wiley	10/e, 2018			

Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Modern Operating Systems	Andrew S. Tanenbaum Herbert Bos	Pearson	5/e, 2012			
2	The Design of the UNIX Operating System	Maurice J. Bach	Prentice Hall of India	1/e, 1994			
3	The Little Book of Semaphores	Allen B. Downey	Green Tea Press	1/e, 2016			

Module No.	Link ID				
1	https://archive.nptel.ac.in/courses/106/105/106105214/				
2 https://www.youtube.com/playlist?list=PLDW872573QAb4bj0URobvQTD41IV6gRkx					

INTERNET OF THINGS LAB

Course Code	PCAML507	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:3:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Lab

Course Objectives:

- 1. To enable the learners to get familiarized with the IoT Trainer kit.
- 2. To enable the learners to develop practical skills in IoT applications, protocols, and security.

Expt. No.	Experiments
1	Research and explain three real-world IoT applications using the components available in
	the IoT Trainer kit. Set up the IoT Trainer kit and understand its modules.
2	Use the temperature and humidity sensor module in the IoT Trainer kit to collect
	environmental data. Write a script to display the readings on the provided interface.
3	Interface the light and sound sensors from the IoT Trainer kit. Write a script to capture data
	and trigger actions (e.g., lighting an LED when the sound level exceeds a threshold).
4	Use the IoT Trainer kit to set up an MQTT communication system. Publish sensor data to a
	topic and subscribe to another topic to receive control signals.
5	Use the IoT Trainer kit to send sensor data to a local server via HTTP. Create a simple web
	interface to display the data.
6	Write a script to control an LED and relay module in the IoT Trainer kit. Implement a
	scenario where the relay controls a fan based on temperature readings.
7	Utilize the PWM functionality in the IoT Trainer kit to control the speed of a motor.
/	Implement a system where motor speed adjusts based on sensor input (e.g., light intensity).
8	Configure the IoT Trainer kit to send sensor data to a local server for storage and
0	visualization. Use basic analytics to process the data.
9	Write a script to analyze sensor data from the IoT Trainer kit, such as calculating averages
	or identifying trends. Visualize the results.
10	Implement basic encryption techniques using the IoT Trainer kit to secure data transmission.
10	Demonstrate how data can be encrypted and decrypted.
11	Project: Design and implement a project that uses multiple components of the IoT Trainer
11	kit to create a functional IoT system (e.g., a smart home system).

Course Assessment Method (CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment)	Internal Examination	Total
5	25	20	50

End Semester Examination Marks (ESE):

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	Result with valid inference/ Quality of Output	Viva voce	Record	Total
10	15	10	10	5	50

- Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.
- Endorsement by External Examiner: The external examiner shall endorse the record

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Demonstrate the ability to interface and utilize various sensors and actuators from the IoT Trainer kit, including reading sensor data and controlling actuators.	К3
CO2	Implement and configure IoT communication protocols, such as MQTT and HTTP for real world applications.	K3
CO3	Integrate IoT systems with cloud platforms for data storage and visualization, and perform basic data analytics to derive insights from sensor data.	K3
CO4	Apply fundamental IoT security measures to protect data and devices	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO- PO Mapping (Mapping of Course Outcomes with Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3							3
CO2	3	3	3	3	3							3
CO3	3	3	3	3	3							3
CO4	3	3	3	3	3							3

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Internet of Things - A Hands On Approach	Arshdeep Bahga, Vijay Madisetti	Universities Press	1/e, 2016				
2	Internet of Things : Architecture and Design Principles	Raj Kamal	McGraw Hill	1/e, 2017				

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Internet of Things: Principles and Paradigms	Rajkumar Buyya and Amir Vahid Dastjerdi	Morgan Kaufmann Publishers In	1/e, 2016				
2	Getting Started with Raspberry Pi	Matt Richardson and Shawn Wallace	O'Reilly	1/e, 2013				
3	Practical Electronics for Inventors	Paul Scherz and Simon Monk	McGraw Hill TAB	1/e, 2016				
4	MQTT Essentials - A Lightweight IoT Protocol: Send and receive messages with the MQTT protocol	Gastón C Hillar	Packt Publishing	1/e, 2017				
5	HTTP: The Definitive Guide	David Gourley and Brian Totty	O'Reilly	1/e, 2022				
6	Data Science for IoT Engineers: A Systems Analytics Approach	P. G. Madhavan	Mercury Learning & Information	1/e, 2021				
7	Internet of Things Security: Principles and Practice	Qinghao Tang and Fan Du	Springer Verlag	1/e, 2021				

Video Links (NPTEL, SWAYAM)					
Sl. No.	Link ID				
1	https://archive.nptel.ac.in/courses/106/105/106105166/				
2	https://archive.nptel.ac.in/courses/108/108/108108179/				

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

• Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted

DEEP LEARNING LAB

Course Code	PCCML508	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:3:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	UCEST105	Course Type	Lab

Course Objectives:

- 1. To get hands-on experience in machine learning.
- 2. To enable the learners to develop deep learning models for computer vision and natural languages using python.

Expt. No.	Experiments
1	Implement and demonstrate Single, Multi variable and Polynomial Regression for a given
1	set of training data stored in a .CSV file and evaluate the accuracy.
2	Write a Python program to implement KNN classifiers and calculate the accuracy, precision,
2	and recall for your data set.
2	Assuming a set of data that need to be classified, use a Naive Bayes classifier to perform this
5	task and evaluate the accuracy.
	Write a Python program to demonstrate the working of the decision tree based ID3
4	algorithm. Use an appropriate data set for building the decision tree and apply this
	knowledge to classify a new sample.
5	Implement hierarchical clustering algorithm on a given dataset to categorize the data.
6	Implement k means clustering algorithm on a given dataset to categorize the data.
7	Build an Artificial Neural Network using Backpropagation algorithm on a given dataset and
/	test the same with appropriate dataset.
	Implement Feed forward neural network with three hidden layers for classification on
0	CIFAR-10 dataset. Analyse the impact of optimization and weight initialization techniques
0	such as Xavier initialization, Kaiming Initialization, dropout and regularization
	techniques, and visualize the change in performance.
9	Digit classification using CNN architecture for MNIST dataset. Identify the performance
7	change through pre-trained networks such as VGGNet or GoogleNet.

10	Implement a simple RNN for review classification using IMDB dataset. Analyze and
10	visualize the performance change while using LSTM and GRU instead of simple RNN.
11	Implement time series forecasting prediction for NIFTY-50 dataset.
12	Implement a shallow auto encoder and decoder network for machine translation(by using
12	any dataset in Kaggle such as English to Hindi neural translation dataset).

Course Assessment Method (CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment)	Internal Examination	Total
5	25	20	50

End Semester Examination Marks (ESE):

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	Result with valid inference/ Quality of Output	Viva voce	Record	Total
10	15	10	10	5	50

• Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.

• Endorsement by External Examiner: The external examiner shall endorse the record

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Develop machine learning models in python for regression, classification and clustering tasks using algorithms such as naïve bayes, decision tree, ANN.	K3
CO2	Implement a deep learning model for computer vision tasks and increase the performance of the model through hyper parameter tuning.	K3
CO3	Develop a recurrent neural network for sequence modelling such as text or time series data and analyse the performance change through LSTM and GRU.	K3
CO4	Develop an algorithm for machine translation using python.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-	PO	Mann	ino (Mann	ing of	Cours	e Outcom	es with	Program	Outcomes)
00-	IU	wiapp	mg (wapp	ing or	Cours	e Outcom	es with	Trogram	Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	2	2	2						2
CO2	3	3	3	1	2	2						2
CO3	3	3	3	2	2	2						2
CO4	3	3	3	2	2	2						2

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

		Text Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Hands–On Machine Learning with Scikit–Learn and TensorFlow	Aurelien Geron	O'Reilly	3/e, 2022
2	Deep Learning with Python	François Chollet	Manning	2/e, 2021

	R	eference Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Introduction to Machine Learning	EthemAlpaydin	MIT Press	2/e, 2010
2	The Engineering of Knowledge- Based Systems	Goodfellow, I., Bengio,Y., and Courville, A.	MIT Press	1/e, 2016

	Video Links (NPTEL, SWAYAM)
Module No.	Link ID
1	https://c.d2l.ai/berkeley-stat-157/
2	https://onlinecourses.nptel.ac.in/noc20_cs95/preview
3	https://nptel.ac.in/courses/108105103

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

• Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted

SEMESTER 6

ARTIFICIAL INTELLIGENCE & MACHINE LEARNING

INTRODUCTION TO NATURAL LANGUAGE PROCESSING

Course Code	PCCMT601	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To introduce fundamental NLP tasks, applications, and language processing challenges.
- 2. To explore basic machine learning techniques, including neural networks and transformers, used in NLP.
- **3.** To impart rule-based and machine learning approaches, emphasizing pre-trained models and transfer learning.

SYLLABUS

Module No.	Syllabus Description					
	Introduction to NLP:-					
	NLP Tasks and Applications; Language-Building Blocks; Challenges of NLP;					
1	Machine Learning for NLP - Neural Networks, Transformers;	8				
	Approaches to NLP - Transformer-Based NLP, Pre-trained Language Models;					
	Ethics in NLP					
	Pre-Processing Text Representation & Information Extraction:-					
	NLP System Pipeline - Modern Approaches, Including Transfer Learning;					
	Text Representation - Word Embeddings (Word2Vec, GloVe, FastText),					
2	Transformer-based Embeddings (BERT, GPT).					
	Advanced Feature Engineering techniques:-					
	Information Extraction - Deep Learning approaches, Relation Extraction using					
	Transformers; Advanced NER techniques.					
3	Text Classification, Relation Detection, and Information Retrieval:-					
	Text Classification - Transformer-Based Classifiers, Fine-Tuning Pre-Trained					
	Models; Relation Detection and Classification - Supervised and Lightly					
	Supervised Approaches, Evaluation of Relation Analysis Systems;					

	Information Retrieval - Term weighting, Document scoring, Inverted Index						
	Neural IR, Transformer-Based IR models, Evaluation of IR Systems.						
	QA Systems, Machine Translation, and Large Language Models:-						
4	Question-Answering Systems - Transformer-Based QA models, Open-						
	Domain QA; Machine Translation - Neural Machine Translation (NMT),	12					
	Transformer-Based NMT, Multilingual NLP Models; Introduction to Large						
	Language Models - GPT-3, GPT-4, and their applications						

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Bloom's Knowledge Level (KL)	
CO1	Explain foundational NLP tasks, challenges, and the integration of neural networks and transformers in modern NLP systems.	K2
CO2	Demonstrate advanced pre-processing techniques, feature engineering, and text representation methods, including transformer-based models.	К3
CO3	Use NLP models for text classification, relation detection, and information retrieval, focusing on the use of transformers and large language models.	K3
CO4	Demonstrate NLP applications such as machine translation and QA systems using state-of-the-art large language models, considering ethical implications.	K3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									2
CO2	3	3	3	3								2
CO3	3	3	3	3								2
CO4	3	3	3	3								2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	SpeechandLanguageProcessing	Daniel Jurafsky and James H. Martin	Pearson Education	2/e, 2013					
2	Foundations of Statistical Natural Language Processing	Christopher Manning, Hinrich Schütze	MIT Press	1/e, 2019					
	Reference Books								
--------	--	---	--------------------------	---------------------	--				
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Natural Language Understanding	James Allen	Pearson	1/e, 1994					
2	Natural Language Processing with Transformers: Building Language Applications With Hugging Face	Leandro Von Werra, Lewis Tunstall and Thomas Wolf	O'Reilly Media	1/e, 2022					
3	Natural language processing: a Paninian perspective	Akshae Bharti, Vineet Chaitanya and Rajeev Sangal	Prentice Hall India	1/e, 1995					

Video Links (NPTEL, SWAYAM)				
Sl. No.	Link ID			
1	https://onlinecourses.nptel.ac.in/noc23_cs45/preview			

GENERATIVE AI

Course Code	PCCMT602	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCMT503	Course Type	Theory

Course Objectives:

- **1.** To impart the foundational understanding about the principles and concepts behind generative AI models, including GANs, VAEs and Transformer-based architectures like GPT.
- **2.** To educate the learners to apply ethical considerations in the use of generative AI for the responsible use and deployment of generative models.
- **3.** To enable the learners to understand the significance of prompt engineering and cost optimization in generative AI.

Module No.	Syllabus Description			
1	Generative Modeling - Introduction, Generative Vs. Discriminative Modeling, Advances in Machine Learning, The Rise of Generative Modeling, The Generative Modeling Framework, Challenges of Generative Modeling, Ethical Considerations in Generative AI, Bias and Fairness in Generative AI systems, responsible use and deployment of generative models.	8		
2	Autoencoders - Autoencoders, The Encoder, The Decoder, Joining the Encoder to the Decoder, Analysis of Autoencoder, Variational Autoencoders; Kullback–Leibler (KL) divergence loss function; Generative Adversarial Network - Introduction to GANs, The Discriminator, The Generator, Training the GAN, GAN Challenges, Oscillating Loss, Mode Collapse, Uninformative Loss, Hyper parameters.	10		
3	Recurrent Neural Network (RNN). Architecture of RNN, Long Short-Term Memory (LSTM), Architecture of LSTM, Gated Recurrent Unit (GRU),	10		

SYLLABUS

	Architecture of GRU, Encoder-Decoder Models, Question-Answer Generator	
	using RNN and Encoder-Decoder, Architecture, Attention mechanisms,	
	Transformer Architecture, Self Attention, Analysis of the Transformer, BERT,	
	GPT-2 ,Large Language Models (LLM).	
	Cost Optimization in the Development and Operation of Generative AI	
	Applications, Fine Tuning and customizability, Parameter Efficient Fine	
4	Tuning Methods, Prompt Tuning, Prefix Tuning, P-Tuning, IA3, Low-Rank	8
	Adaptation, Prompt Engineering, Clear and Direct Prompts, Adding	Ũ
	Qualifying Words for Brief Responses, Breaking Down the Request, In-	
	context learning (ICL) in LLMs.	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1	Internal Examination- 2	Total
	Microproject	(Written)	(Written)	
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each module	 Each question carries 9 marks. Two questions will be given from each module, out 	
 Total of 8 Questions, each 	of which 1 question should be answered.	
carrying 3 marks	 Each question can have a maximum of 3 subdivisions. 	60
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the difference between generative and discriminative models and the need to ensure responsible use of generative models.	K2
CO2	Use Variational Autoencoders and GAN to generate new content and enhance existing data.	К3
CO3	Solve real life problems using various neural network based language models.	К3
CO4	Illustrate the significance of Cost Optimization and Prompt Engineering in Generative AI applications.	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	2	-	2	-	3	-	-	-	2
CO2	3	3	3	2	-	-	-	-	-	-	-	2
CO3	2	2	2	2	-	-	-	-	-	-	-	2
CO4	2	2	2	2	-	-	-	-	-	-	-	2

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Generative Deep Learning	David Foster	O'Reily	1/e, 2019		
2	Deep Learning	Ian Goodfellow, Yoshua Bengio, Aaron Courville	MIT press	1/e, 2016		
3.	Large Language Model-Based Solutions: How to Deliver Value with Cost-Effective Generative AI Applications.	Shreyas Subramanian	Wiley	1/e, 2024		

	Reference Books				
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
1	Deep Learning Illustrated	Jon Krohn, Grant Beyleveld, Aglae Bassens	Pearson	1/e, 2020	
2	Prompt Engineering for Generative AI	James Phoenix, Mike Taylor	O'Reilly	1/e, 2024	
3	GANs in Action: Deep learning with Generative Adversarial Networks	Jakub Langgr, Vladimir Bok	Manning	1/e, 2019	

Video Links (NPTEL, SWAYAM)			
Sl. No.	Link ID		
1	Deep Generative Models: An Introduction		
	(https://www.youtube.com/watch?v=v_ksUIpToGk)		
2	Generative Adversarial Networks-Part 01		
	(https://www.youtube.com/watch?v=LMpyYPzxQ9w)		
3	Introduction to Transformer Architecture		
	(https://www.youtube.com/watch?v=cVbGNL0N2RI)		
4	Generative Adversarial Networks-Part 02		
	(https://www.youtube.com/watch?v=X3SJ2mRodF0)		

SOFTWARE TESTING

(Common to CS/CA/CM/CD/CR/AM/AD)

Course Code	PECST631	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To Cultivate proficiency in software testing methodologies and techniques.
- 2. To Foster expertise in software testing tools and technologies.

SYLLABUS

Module	Syllabus Description	
No.		
	Introduction to Software Testing & Automation:-	
	Introduction to Software Testing - Concepts, importance of testing,	
	software quality, and real-world failures (e.g., Ariane 5, Therac 25);	
	Software Testing Processes - Levels of thinking in testing; Testing	
	Terminologies - Verification, validation, fault, error, bug, test cases, and	
1	coverage criteria; Types of Testing - Unit, Integration, System,	0
1	Acceptance, Performance (stress, usability, regression), and Security	ð
	Testing; Industry Trends - AI in test case automation, Introduction to	
	GenAI in testing; Testing Methods - Black-Box, White-Box, and Grey-	
	Box Testing; Automation in Testing - Introduction to automation tools	
	(e.g., Selenium, Cypress, JUnit); Case Study- Automation of Unit Testing	
	and Mutation Testing using JUnit.	
	Unit Testing, Mutation Testing & AI-Driven Automation:-	
	Unit Testing- Static and Dynamic Unit Testing, control flow testing, data	
2	flow testing, domain testing; Mutation Testing- Mutation operators,	0
2	mutants, mutation score, and modern mutation testing tools (e.g.,	8
	Muclipse); JUnit Framework - Automation of unit testing, frameworks for	
	testing in real-world projects; AI in Testing - GenAI for test case	

	generation and optimization, impact on automation; Industry Tools -	
	Application of AI-driven testing tools in automation and predictive	
	testing; Case Study - Mutation testing using JUnit, AI-enhanced test case	
	automation.	
	Advanced White Box Testing & Security Testing:-	
	Graph Coverage Criteria - Node, edge, and path coverage; prime path and	
	round trip coverage; Data Flow Criteria - du paths, du pairs, subsumption	
	relationships; Graph Coverage for Code - Control flow graphs (CFGs) for	
3	complex structures (e.g., loops, exceptions); Graph Coverage for Design	10
	Elements - Call graphs, class inheritance testing, and coupling data-flow	
	pairs; Security Testing - Fundamentals, tools (OWASP, Burp Suite), and	
	their role in protecting modern applications; Case Study - Application of	
	graph based testing and security testing using industry standard tools.	
	Black Box Testing, Grey Box Testing, and Responsive Testing:-	
	Black Box Testing - Input space partitioning, domain testing, functional	
	testing (equivalence class partitioning, boundary value analysis, decision	
	tables, random testing); Grey Box Testing - Introduction, advantages, and	
	methodologies (matrix testing, regression testing, orthogonal array	
	testing); Performance Testing - Network latency testing, browser	
4	compatibility, responsive testing across multiple devices (e.g.,	10
	BrowserStack, LambdaTest); Introduction to PEX - Symbolic execution,	
	parameterized unit testing, symbolic execution trees, and their application;	
	GenAI in Testing - Advanced use cases for predictive and responsive	
	testing across devices and environments; Case Study- Implementation of	
	black-box, grey-box, and responsive testing using PEX and AI-driven	
	tools.	

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module,	
• Total of 8 Questions, each	out of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3	00
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Demonstrate the ability to apply a range of software testing techniques, including unit testing using JUnit and automation tools.	K2
CO2	Illustrate using appropriate tools the mutation testing method for a given piece of code to identify hidden defects that can't be detected using other testing methods.	К3
CO3	Explain and apply graph coverage criteria in terms of control flow and data flow graphs to improve code quality.	K2
CO4	Demonstrate the importance of black-box approaches in terms of Domain and Functional Testing	К3
CO5	Illustrate the importance of security, compatibility, and performance testing across devices.	К3
CO6	Use advanced tools like PEX to perform symbolic execution and optimize test case generation and also leverage AI tools for automated test case prediction and symbolic execution with PEX.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

3
3
3
3
3
3

	Text Books				
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
1	Introduction to Software Testing.	Paul Ammann, Jeff Offutt	Cambridge University Press	2/e, 2016	
2	Software Testing and Quality Assurance : Theory and Practice	Kshirasagar Naik, Priyadarshi Tripathy	Wiley	1/e, 2008	

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Software Testing	Ron Patten	Pearson	2/e, 2005		
2	Software Testing: A Craftsman's Approach	Paul C. Jorgensen	CRC Press	4/e, 2017		
3	Foundations of Software Testing	Dorothy Graham, Rex Black, Erik van Veenendaal	Cengage	4/e, 2021		
4	The Art of Software Testing	Glenford J. Myers, Tom Badgett, Corey Sandler	Wiley	3/e, 2011		

Video Links (NPTEL, SWAYAM)			
Module	Link ID		
No.			
1	https://archive.nptel.ac.in/courses/106/101/106101163/		
2	https://archive.nptel.ac.in/courses/106/101/106101163/		
3	https://archive.nptel.ac.in/courses/106/101/106101163/		
4	https://archive.nptel.ac.in/courses/106/101/106101163/		

BASICS OF COMPUTER NETWORKS

Course Code	PEAMT632	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To introduce the core concepts of computer networking.
- 2. To impart the idea of network management concepts.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
	Overview of the Internet, Protocol layering (Book 1 Ch 1)	
	Application Layer: Application-Layer Paradigms, Client-server applications -	-
1	World Wide Web and HTTP, FTP. Electronic Mail, DNS. Peer-to-peer	6
	paradigm - P2P Networks, Case study: BitTorrent (Book 1 Ch 2)	
	Transport Layer: Services, Protocols, UDP, TCP (Book 1 Ch 3).	
	Network Layer: Introduction, Network-layer protocols, Unicast routing,	
2	Multicast routing - Multicasting Basics, Intra domain and inter-domain routing,	11
	Next generation IP (Book 1 Ch 4), Quality of Service (Book 1 Ch 8)	
	Data-Link Layer: Data link control (DLC), Multiple access protocols (MAC),	
3	Link-layer addressing, Ethernet protocol, Connecting devices (Book 1 Ch 5)	10
	Wireless LANs, Mobile IP (Book 1 Ch 6)	
	SNMP, ASN.1 (Book 1 Ch 9)	
4	Physical Layer: Data and signals, Digital transmission, Analog transmission,	9
	Bandwidth utilization, Transmission media (Book 1 Ch 7)	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	6.0
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the internetworking design in terms of protocol stack and the role of various application layer protocols	K2
CO2	Illustrate the functions of the transport layer from connectionless and connection-oriented perspectives	K3
CO3	Identify how the network layer achieves host-to-host connectivity and caters to the diverse service requirements of the host applications	К3
CO4	Explain the nuances of the data link layer design and demonstrate the various data link link layer protocols	K3
CO5	Describe the fundamental characteristics of the physical layer and understand how the physical layer supports the functionalities of the top layers	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3								3
CO2	3	3	3	3								3
CO3	3	3	3	3								3
CO4	3	3	3	3								3
CO5	3	3	3	3								3

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Computer Networks: A Top- Down Approach	Behrouz A Forouzan	McGraw Hill	SIE, 2017				

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Unix Network Programming, Volume 1: The Sockets Networking API	W. Richard Stevens, Andrew M. Rudoff, Bill Fenner	Pearson Education	3/e, 2004			
2	TCP/IP Architecture, design, and implementation in Linux	Sameer Seth M. Ajaykumar Venkatesulu	Wiley	1/e, 2008			
3	Computer Networking: A Top- Down Approach Featuring Internet	J. F. Kurose and K. W. Ross	Pearson Education	8/e, 2022			
4	Computer Networks, A Systems Approach	L. L. Peterson and B. S. Davie	Morgan Kaufmann	5/e, 2011			

Video Links (NPTEL, SWAYAM)				
Sl. No.	Link ID			
1	https://nptel.ac.in/courses/106/105/106105183/			

WIRELESS & MOBILE COMPUTING

(Common to CS/CM/AM)

Course Code	PECST633	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- **1.** To enable the learners to acquire advanced concepts on wireless communication systems and mobile ad-hoc networks.
- **2.** To impart the basics of mobile computing, architecture of wireless transmission systems and next generation networks
- **3.** To Learn the communication protocols, various architectures and security features used in mobile computing.

Module	Syllabus Description	Contact
No.		
1	Wireless LAN - Advantages, Design goals, Applications, Infrastructure Vs Ad-hoc mode, IEEE 802.11 System Architecture, Protocol Architecture, Physical layer, Medium Access Control layer, HIPERLAN-1, Bluetooth	9
2	Introduction to mobile computing – Functions, Middleware and Gateways, Application and services. Mobile computing architecture – Internet: The Ubiquitous network, Three-tier architecture for Mobile Computing, Design considerations for mobile computing.	8
3	Spread spectrum – Direct sequence, Frequency hopping. Medium Access Control – Space Division Multiple Access (SDMA), Frequency Division Multiple Access (FDMA), Time Division Multiple Access (TDMA), Code Division Multiple Access (CDMA). Satellite Systems – Basics, Applications, Geostationary Earth Orbit (GEO), Low Earth Orbit (LEO), Medium Earth Orbit (MEO), Routing, Localization, Handover. Telecommunication Systems - Global System for Mobile Communication (GSM)	9

SYLLABUS

4	Mobile network layer – Mobile Internet Protocol (IP), Dynamic Host Configuration Protocol (DHCP), Mobile ad-hoc networks – Routing, Dynamic Source Routing (DSR), Destination Sequenced Distance Vector (DSDV), Ad- hoc routing protocols; Mobile transport layer – Traditional Transmission Control Protocol (TCP), Improvements in Classical TCP; Security issues in mobile computing - Information security, Security techniques and algorithms, Security models.	10
---	--	----

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3	00
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the various mobile computing applications, services, design considerations and architectures	K2
CO2	Describe the various technology trends for next generation cellular wireless networks and use the spreading concept on data transmission	K2
CO3	Summarize the architecture of various wireless LAN technologies	K2
CO4	Identify the functionalities of mobile network layer & transport layer and various security issues in mobile computing	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3									3
CO5	3	3	3									3

Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Mobile Computing Technology - Application and Service Creation	Asoke K. Talukder, Hasan Ahmad, Roopa R Yavagal	McGraw Hill	2/e, 2010		
2	Mobile Communications	Jochen Schiller	Pearson	2/e, 2000		
3	Fundamentals of 5G Mobile Networks	Jonathan Rodriguez	Wiley	1/e, 2015		

Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Mobile Computing	Raj Kamal	Oxford University Press	2/e, 2011		
2	Computer Networks,	Andrew S. Tanenbaum	PHI	3/e, 2003		
3	Wireless Communications Principles and Practice	Theodore S. Rappaport	PHI	2/e, 2004		
4	Fundamentals of Networking and Communication	Curt M. White	Cengage learning	7/e, 2013		

	Video Links (NPTEL, SWAYAM)				
Sl.No.	Link ID				
1	https://archive.nptel.ac.in/courses/106/106/106106147/				

ADVANCED DATABASE SYSTEMS

(Common to CS/CM/CR/AM/AD)

Course Code	PECST634	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To learn the fundamentals of data modeling, query processing, and design in advanced databases and study the working principles of distributed databases.
- 2. To learn emerging databases such as XML and NoSQL.
- **3.** To enable the student to use tools, methodologies, and skills for working successfully with databases in today's global, data driven business model.

Module No.	Syllabus Description			
	Query Processing and Optimization - Measures of query cost, Algorithms for Selection with cost analysis, Algorithms for Join with cost analysis, Evaluation of expressions: Heuristics in Ouery Optimization - Optimization of Relational			
1	Algebra expressions; Physical Database Design and Tuning - Introduction to Physical Database Design, Overview of Database Tuning, Tuning the Conceptual Schema, Tuning Queries and Views; Impact of Concurrency.	9		
2	Distributed Databases - Distributed Systems, Introduction, Architecture, Distributed Database Concepts, Distributed Data Storage, Distributed Transactions, Commit Protocols, Concurrency Control; Query Processing and Decomposition - Query Processing Objectives, Characterization of Query Processors, Layers of Query Processing, Query Decomposition, Localization of Distributed Data.	9		
3	XML and Non Relational Databases - Introduction to Semi Structured Data and XML Databases, XML Data Model – XSD, XML: DTD and XML Schema,	9		

	XML Presentation, XPath Queries, XQuery; NoSQL Databases - CAP Theorem, Document based; MongoDB Operation - Insert, Update, Delete,	
	Data Model, Key Space, Table Operations, CRUD Operations.	
	Graph database - Introduction, Data Modelling with Graphs, Building a Graph Database application, Data Modeling, Predictive Analysis with Graph Theory;	0
4	Depth and Breadth First Search; Path-Finding with Dijkstra's Algorithm; Graph Theory and Predictive Modeling	У

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions.

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3	00
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
C01	Apply various measures for query processing and optimization, and apply techniques to tune database performance.	K3
CO2	Explain the architecture and fundamental concepts of distributed databases.	K2
СО3	Utilize semi-structured data, XML, and XML queries for effective data management	K3
CO4	Utilize NoSQL database systems to manage and manipulate data in real- time applications	K3
C05	Develop advanced skills in graph database concepts, covering data modeling, application building, and the application of graph theory for predictive analysis and modeling.	K3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping	Table	(Mapping	of Course	Outcomes to	Program	Outcomes)
		(

	DO1				DO5		DO7	DOP	PO9	PO1	PO1	PO1
	PUI	PO2	PUS	PU4	P05	PU0	PU/	PUð		0	1	2
CO1	3	2	2									3
CO2	3	2	2									3
CO3	3	2	2		2							3
CO4	3	2	2		2							3
CO5	3	3	3		3							3

Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Fundamentals of Database Systems	Ramez Elmasri, Shamkant B. Navathe	Pearson	7/e, 2017			
2	Database System Concepts	A. Silberschatz, H. Korth, S. Sudarshan	McGraw-Hill	7/e, 2021			
3	Database Management Systems	R. Ramakrishnan, J. Gehrke	McGraw Hill	3/e, 2018			
4	Graph Databases	Ian Robinson, Jim Webber & Emil Eifrem	O'Reilly	2/e, 2015			
5	Database Systems	T. M. Connolly, C. Begg	Pearson	6/e, 2019			

Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Principles of Database Management: Practical Guide to Storing, Managing and Analyzing Big and Small Data	W. Lemahieu, S. vanden Broucke and B. Baesens	Cambridge University Press	1/e, 2018			
2	Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems	M. Kleppmann	O'Reilly	1,e2017			
3	Database Systems: The Complete Book	Hector Garcia-Molina Jeffrey D. Ullman Jennifer Widom	Prentice Hall	2/e, 2009			
4	Next generation databases: NoSQL, newSQL, and big data. Apres.	Guy Harrison	Apress	1/e, 2015			
5	Foundations of Multidimensional and Metric Data Structures	Hanan Samet	Morgan Kaufmann	1/e, 2006			

Video Links (NPTEL, SWAYAM)						
Module No.	Link ID					
1	CAP Theorem https://nptel.ac.in/courses/106104189					
2	Advanced database Queries https://archive.nptel.ac.in/courses/106/104/106104021					
3	Database design https://archive.nptel.ac.in/courses/106106093/					
4	Introduction to modern application development https://archive.nptel.ac.in/courses/106/106/106106156					

DIGITAL IMAGE PROCESSING

(Common to CS/CM/CA/AM)

Course Code	PECST636	CIE Marks	40
Teaching Hours/Week (L:T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To provide foundational concepts of digital image representation, processing, and analysis, including image digitization, color theory, and various data structures, to effectively manipulate and analyze digital images.
- 2. To help the learner develop the ability to implement advanced image processing techniques, such as image segmentation, edge detection, and image compression, while critically evaluating the performance and quality of these methods in practical applications.

Module	Syllabus Description	Contact
No.	Synabus Description	Hours
	The image, its representation and properties - Image representations, Image	
	digitization, Sampling, Quantization, Digital image properties, Metric and	
	topological properties of digital images, Histograms, Entropy, Visual	
	perception of the image, Image quality, Noise in images; Color images -	
1	Physics of color, Color perceived by humans, Color spaces, Color constancy;	9
	Data structures for image analysis - Levels of image data representation,	
	Traditional image data structures - matrices, Chains, Topological data	
	structures - Relational structures, Hierarchical Data Structures, Pyramids,	
	Quadtrees, Other pyramidal structures.	
	Image pre-processing - Pixel brightness transformations-, Position-dependent	
	brightness correction, Gray-scale transformation, Geometric Transformations	
2	- Pixel coordinate transformations, Brightness interpolation.	8
	Local pre-processing, Image Smoothing, Edge detectors, Zero-crossings the	
	second derivative, Scale in Image Processing, Canny Edge Detection,	

9
10

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3	00
	subdivisions.	
(8x3 =24 Marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge
		Level (KL)
CO1	Understand the properties of monochrome and colour images and the data structures for image analysis	K2
CO2	Apply different preprocessing techniques to visualize image enhancement	К3
СО3	Understand the concept of image segmentation and various techniques used for this.	K2
CO4	Understand the various transforms used for image processing	K2
CO5	Understand the concept of image compression and apply various image compression techniques.	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO DO Manning Table	Manning of Cours	Outcomes to Program Outcome	<i>с</i>)
CO-ro mapping rank	c (Mapping of Cours	e Outcomes to rrogram Outcome	SJ

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									2
CO2	3	3	3	3								2
CO3	3	3	3	3								2
CO4	3	3	3	3								2
CO5	3	3	3	3								2

Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Image Processing, Analysis and Machine Vision	Milan Sonka, Vaclav Hlavac, Roger Boyle	Cengage	4/e, 2015		

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Fundamental of Digital Image Processing	Anil K. Jain	Pearson	1/e, 2015			
2	Digital image Processing	Ralph Gonzalez, Richard Woods	Pearson	4/e, 2018			
3	Digital Image Processing	S Jayaraman, S Esakkirajan, T Veerakumar	McGraw Hill	2/e, 2020			

Video Links (NPTEL, SWAYAM)				
Sl. No.	Link ID			
1	https://archive.nptel.ac.in/courses/117/105/117105135/			
2	https://archive.nptel.ac.in/courses/106/105/106105032/			

FUNDAMENTALS OF CRYPTOGRAPHY

(Common to CS/CM/CR/AM/AD)

Course Code	PECST 637	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To develop a foundational understanding of mathematical concepts in cryptography,
- 2. To gain comprehensive knowledge of cryptographic methods.

SYLLABUS	\$
-----------------	----

Module	Syllabus Description	Contact
No.	Synabus Description	
	Introduction to Number Theory - Divisibility and The Division Algorithm,	
	The Euclidean Algorithm, Modular Arithmetic : The Modulus, Properties of	
	Congruences, Modular Arithmetic Operations, The Extended Euclidean	
1	Algorithm, Primitive Roots, Existence of Primitive Roots for Primes,	10
I	Fermat's Theorem, Euler's Totient Function,	10
	Euler's Theorem, Testing for Primality : Miller-Rabin Algorithm, A	
	Deterministic Primality Algorithm, Discrete Logarithms, Chinese	
	Remainder Theorem.	
	Security Attacks; Security Services; Security Mechanisms; Fundamental	
2	Security Design Principles; Cryptography - Symmetric Cipher Model,	o
2	Substitution Techniques, Transposition techniques; Traditional Block	o
	Cipher Structure.	
	The Data Encryption Standard - DES Encryption & Decryption, Avalanche	
3	Effect, Strength of DES; Advanced Encryption Standard - AES Structure;	
	Stream Ciphers; RC4; Principles of Public-Key Cryptosystems - Public-Key	10
	Cryptosystems, Applications for Public-Key Cryptosystems, Requirements	
	for Public-Key Cryptography,	

	The RSA Algorithm, Description of the Algorithm; Diffie-Hellman Key	
	Exchange	
	Cryptographic Hash Functions - Applications of Cryptographic Hash	
4	Functions, Secure Hash Algorithm (SHA), SHA-3; MAC; MD5; Digital	o
	Signatures.; Key Management and Distribution - Symmetric Key	o
	Distribution; X.509 certificates; PKI.	

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3	00
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Apply number theory concepts in data security	К3
CO2	Explain the cryptographic concepts and apply the classical encryption methods for data confidentiality	K3
СО3	Describe the symmetric and asymmetric ciphers used for information security	K2
CO4	Explain the algorithms used for authentication and integrity	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	3	3	3	2								2
CO2	3	3	3	2								2
CO3	3	3	3									2
CO4	3	3	3									2

	Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Cryptography & Network Security: Principles and practice	William Stallings	Pearson	7/e, 2017						

Reference Books										
Sl. No	Title of the Book	ok Name of the Author/s		le of the Book Name of the Author/s Pub		Edition and Year				
1	Cryptography & Network Security	Behrouz A. Forouzan	McGraw Hill	3/E, 2007						
2	Security in Computing	Charles P. Pfleeger, Shari L. Pfleeger, Jonathan Margulies	Prentice Hall	5/e, 2015						
3	A Classical Introduction to Cryptography: Applications for Communications Security	S. Vaudenay	Springer	1/e, 2009						
4	Introduction to Cryptography: Principles and Applications	H. Delfs, H. Knebl	Springer- Verlag	1/E, 2002						

Video Links (NPTEL, SWAYAM)						
Module	Link ID					
No.						
1	https://archive.nptel.ac.in/courses/111/101/111101137/					
2	https://nptel/courses/video/106105031/L17.html					
3	https://onlinecourses.nptel.ac.in/noc22_cs90/preview					

QUANTUM COMPUTING

(Common to CS/CM/CR/AD/AM)

Course Code	PECST638	CIE Marks	40
Teaching Hours/Week (L:T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To give an understanding of quantum computing against classical computing.
- **2.** To understand fundamental principles of quantum computing, quantum algorithms and quantum information.

SYLLA	ABUS

Module	Syllabus Description	Contact				
No.	Synabus Description	Hours				
	Review of Basics Concepts					
1	Review of linear algebra, Principles of quantum mechanics, Review of					
	Information theory, Review of Theory of Computation.	9				
	[Text 1 - Ch 1, 2; Text 2, Ch 11.1, 11.2]					
	Introduction to Quantum Information					
	Qubit - Bloch sphere representation, Multiple qubit states, Quantum logic					
2	gates - single qubit and multi-qubit, Quantum circuits, Density matrix,					
	Quantum entanglement.					
	[Text 1 - Ch 3, 4; Text 2 - Ch 4]					
	Quantum Algorithms: -					
2	Simple Quantum Algorithms, Quantum Integral Transforms, Grover's Search					
5	Algorithm and Shor's Factorization Algorithm.					
	[Text 1 - Ch 5,6,7,8]					
	Quantum Communication: -					
4	Von Neumann entropy, Holevo Bound, Data compression, Classical					
	information over noisy quantum channels, Quantum information over noisy					

quantum channels, Quantum Key Distribution, Quantum Communication
protocols
[Text 2 - Ch 11.3, Ch 12.1 - 12.5]

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total	
5	15	10	10	40	

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0
carrying 3 marks	• Each question can have a maximum of 3	00
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course, students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the concept of quantum computing against classical computing.	K2
CO2	Illustrate various quantum computing algorithms.	K2
CO3	Explain the latest quantum communication & protocols.	K2
CO4	Experiment with new algorithms and protocols for quantum computing.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3									2
CO2	3	2	3									2
CO3	3	2	3									2
CO4	3	2	3									2

Text Books				
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Quantum Computing : From Linear Algebra to Physical Realizations	Mikio Nakahara Tetsuo Ohmi	CRC Press	1/e, 2008
2	Quantum Computation and Quantum Information	Michael A. Nielsen & Isaac L. Chuang	Cambridge University Press	1/e, 2010

Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
1	Quantum Computing for Programmers	Robert Hundt	Cambridge University Press	1/e, 2022	
2	Quantum Computing for Everyone	Chris Bernhardt	MIT Press	1/e, 2020	
3	An Introduction to Practical Quantum Key Distribution [paper]	Omar Amer Vaibhav Garg Walter O. Krawec	IEEE Aerospace and Electronic Systems Magazine	March 2021	
4	Quantum communication [paper]	Nicolas Gisin & Rob Thew	Nature Photonics	March 2007	

Video Links (NPTEL, SWAYAM)			
Sl. No.	Link ID		
1	https://archive.nptel.ac.in/courses/106/106/106106232/		
2	https://archive.nptel.ac.in/noc/courses/noc19/SEM2/noc19-cy31/		

CLOUD COMPUTING

(Common to CS/CA/CM/AM)

Course Code	PECST635	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	5/3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To learn fundamentals of cloud and configure cloud environments, deploy virtual machines, and work with containerization tools, gaining practical skills.
- **2.** To learn to identify and address common security threats in cloud environments, implementing best practices to ensure the safety and compliance of applications.

SYLLABUS

Module	Syllabus Description		
No.).		
	Introduction - Limitations of Traditional Computing & solution, Three Layers		
1	of Computing, Factors behind Cloud Service Adoption; Evolution and		
	Enabling Technologies of Cloud; Benefits and Challenges; [Text 2]		
	Fundamental Concepts and Models - Roles and Boundaries, Cloud		
	Characteristics, Cloud Delivery Models, Cloud Deployment Models; [Text 1]		
	Introduction to Cloud Providers (AWS, Azure, Google Cloud).		
	Handson - Cloud Account Setup and Virtual Machine Deployment - Create		
	accounts on a cloud provider and deploy virtual machine instances, and		
	document the process and inferences.		
2	Cloud-Enabling Technology - Networks and Internet Architecture, Cloud		
	Data Center Technology, Modern Virtualization, Multitenant Technology,		
	Service Technology and Service APIs; Understanding Containerization -	10	
	Influencers, Fundamental Virtualization and Containerization, Understanding		
	Containers, Understanding Container Images, Multi-Container Types.[Text 1]		

	Handson - Hypervisor and Containers installation - Install hypervisors and		
	deploy VMs on local machines. Install any container platform and deploy		
	applications.		
	Resource Management - Resource Pooling, Sharing, Provisioning; Scaling in		
	Cloud and the Strategies; Capacity Planning in Cloud Computing; Storage and		
3	File System - Challenges; Cloud Native File System, Deployment models,		
	Storage Types, Popular Cloud Storages. High performance Computing	9	
	Models.[Text 2]		
	Handson - Use Map-reduce to implement basic big data applications such as		
	word count.		
	Understanding Cloud Security - Basic Security Terminology, Basic Threat		
	Terminology, Threat Agents, Common Threats; Other Considerations -		
4	Flawed Implementations, Security Policy Disparity, Contracts, Risk	7	
4	Management.[Text 1]	1	
	Handson : Identify possible attacks of any selected cloud applications and		
	<i>Handson</i> : Identify possible attacks of any selected cloud applications and suggest/implement solutions/policies for mitigation.		

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Internal Ex	Evaluate	Analyse	Total
5	15	10	10	40

Criteria for Evaluation(Evaluate and Analyse): 20 marks

Ways of assessing at

- 1. Analyze level Analyze performance of traditional models (Hardware, Application, Computing / security models) against that in the cloud.
- 2. Evaluate level Derive conclusions on the cloud programming / computing / security models based on standard performance evaluation criteria.

End Semester Examination Marks (ESE):

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions
Part A	Part B	Total
• 2 Questions from each	2 questions will be given from each module, out of	
module. which 1 question should be answered. Each		
• Total of 8 Questions,	can have a maximum of 3 subdivisions. Each	60
each carrying 3 marks	question carries 9 marks.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Bloom's Knowledge Level (KL)	
CO1	Evaluate the limitations of traditional computing models and recognize the factors driving cloud service adoption and compare between various cloud delivery and deployment models.	К5
CO2	Demonstrate proficiency in cloud-enabling technologies, including modern virtualization and containerization	K3
CO3	Examine the resource management within the cloud, including resource pooling, scaling strategies, and storage management and utilize tools like MapReduce for processing big data applications.	K4
CO4	Identify potential security threats in cloud environments and apply appropriate security measures to mitigate these risks.	K3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3							3
CO2	3	3	3	3	2							3
CO3	3	3	3	3	3							3
CO4	3	3	3	3								3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Cloud Computing : Concepts, Technology, Security, and Architecture	Thomas Erl	Pearson	2/e, 2023			
2	Cloud Computing	Sandeep Bhowmik	Cambridge University Press	1/e, 2017			

Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Cloud Computing : Theory and Practice	Dan C. Marinescu	Morgan Kaufman	3/e, 2023		
2	Cloud Computing: A Hands-On Approach	Arshdeep Bahga and Vijay Madisetti	Universities Press	1/e, 2014		
3	Mastering Cloud Computing	Rajkumar Buyya, Christian Vecchiola S.Thamarai Selvi	Morgan Kaufman	1/e, 2013		
4	Cloud Computing : A Practical Approach	Anthony T. Velte, Toby J. Velte, Robert Elsenpeter	McGraw Hill	1/e, 2010		

	Video Links (NPTEL, SWAYAM)				
Sl.No.	Link ID				
1	https://archive.nptel.ac.in/courses/106/105/106105167/				

Course Code	PECMT695	CIE Marks	60
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	40
Credits	5/3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

DATA HANDLING AND VISUALIZATION

Course Objectives:

- **1.** To introduce students to fundamental knowledge in various data handling and visualization techniques using R programming language.
- 2. To highlight the security aspects involved in data visualization.
- **3.** To apply data visualization tools in solving complex problems.

Module No.	Syllabus Description	Contact Hours
1	Introduction to Visualization – Need and purpose, External representation – Difficulty in Validation, Data Abstraction: Dataset types – Attribute types – Semantics, Task Abstraction – Analyse, Produce, Search, Query, Four levels of validation – Validation approaches – Validation examples. Marks and Channels. Data Visualization tools.	10
2	Arrange tables-: Categorical regions – Spatial axis orientation – Spatial layout density, Arrange spatial data: Geometry – Scalar fields – Vector fields – Tensor fields. Arrange networks and trees-: Connections, Matrix views – Containment, Map color: Color theory, Color maps and other channels	12
3	The R Environment - Command Line Interface and Batch processing, R Packages, Variables, Data Types, Vectors - vector operations and factor vectors, List - operations, Data Frames, Matrices and arrays, Control Statements, Branching and looping - For loops, While loops, Controlling loops. Functions - Function as arguments, Named arguments.	10

Importing data from Text files and other software, Exporting data, importing data from databases - Database Connection packages, Missing Data - NA, NULL, Transformations, Binning Data, Subsets, summarizing functions. Data Cleaning, Finding and removing Duplicates, Sorting, Analyzing Data, Summary statistics, Statistical Tests- Continuous Data, Discrete Data, Power tests, Common distributions - type arguments. Probability distributions,	12
Normal distributions.	
	Importing data from Text files and other software, Exporting data, importing data from databases - Database Connection packages, Missing Data - NA, NULL, Transformations, Binning Data, Subsets, summarizing functions. Data Cleaning, Finding and removing Duplicates, Sorting, Analyzing Data, Summary statistics, Statistical Tests- Continuous Data, Discrete Data, Power tests, Common distributions - type arguments. Probability distributions, Normal distributions.

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Internal Ex	Evaluate	Analyse	Total
5	15	10	10	40

Criteria for Evaluation(Evaluate and Analyse): 20 marks

1. Visualizing Demographic Data

Use R to import demographic data (e.g., census data) and create visualizations that highlight population distribution, age groups, education levels, and income categories across different regions.

2. Financial Market Analysis

Import stock market data and create visualizations that help analyze market trends, price movements, and trading volumes.

3. Visualizing Traffic Patterns

Import traffic data and visualize patterns of vehicle movement, congestion areas, and the impact of different factors like time of day or weather.

End Semester Examination Marks (ESE):

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24 marks) 	 2 questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. Each question carries 9 marks. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
C01	Summarize the key techniques and theory used in visualization	K2
CO2	Design and evaluate various methodologies present in data visualization.	K5
CO3	Illustrate uses of conditional and iterative statements in R programs.	K3
CO4	Evaluate the use of Probability distributions and basic statistical functions with R programs	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3			3							3
CO2	3	3	3		3							3
CO3	3	3	3		3							3
CO4	3	3	3	3	3							3

	Text Books									
Sl. No	Title of the BookName of the Author/s		Name of the Publisher	Edition and Year						
1	Visualization Analysis and Design	Tamara Munzner	CRC Press	1/e,2014						
2	R Data Visualization Cookbook	Atmajitsinh Gohil	Packt	1/e, 2015						
3	R in a Nutshell	Joseph Adler	O'reilly	2/e, 2012						
4	Security Data Visualization: Graphical Techniques for Network Analysis	Greg Conti	NoStarch Press Inc	1/e, 2007						

	Reference Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Designing Data Visualizations: Representing Informational Relationships	Julie Steele, Noah Iliinsky	O'Reilly.	1/e, 2011						
2	R for Everyone- Advanced analytics and graphics, Addison Wesley data analytics series, Pearson	Jared P Lander	Pearson	1/e, 2014						
3	Data Visualization: A Successful Design Process	Andy Kirk	Packt	1/e, 2014						

Video Links (NPTEL, SWAYAM)					
Sl. No.	Link ID				
1	https://www.youtube.com/watch?v=qdnM8Fpvdqc				
2	https://www.youtube.com/watch?v=MUP2m46uw8I				

CONCEPTS IN DATA ANALYTICS

Course Code	PBCMT604	CIE Marks	60
Teaching Hours/Week (L: T:P: R)	3:0:0:1	ESE Marks	40
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To help the learner to understand the basic concepts of data analytics.
- **2.** To cover the mathematics for data analytics, predictive and descriptive analytics of data, classification, and clustering & text analytics.
- 3. To enable the learners to perform data analysis on a real world scenario using appropriate tools.

Module No.	Syllabus Description				
	Introduction to Data Analytics:-				
	Analytics Process Model, Analytical Model Requirements, Data Analytics				
	Life Cycle overview; Association of two variables - Discrete variables,				
1	Ordinal and Continuous variable; Probability calculus - probability	9			
	distributions; Hypothesis Testing - Basic definitions.				
	Proximity Measures - Data Objects, Attribute types, Dissimilarity and				
	Similarity measures.				
	Association of Two Variables:-				
	Summarizing the Distribution of Two Discrete Variables, Contingency Tables				
2	for Discrete Data, Joint, Marginal, and Conditional Frequency Distributions,	9			
-	Graphical Representation of Two Nominal or Ordinal Variables, Measures of				
	Association for Two Discrete Variables, Association Between Ordinal and				
	Continuous Variables, Visualization of Variables from Different Scales.				
	Statistical Description of data - Central tendency, Dispersion, Range,				
3	Quartiles, Variance, Standard Deviation, and Interquartile Range.				
5	Data Preprocessing - Cleaning, Integration, Reduction, Transformation,				
	Discretization.				

	Mining Frequent Patterns - Associations, Correlations, and Apriori							
	Algorithms.							
	Classification - General approach to classification, ID3, Attribute selection							
	measures, Naive Bayesian Classification.							
	Clustering - K-Means, Agglomerative versus Divisive Hierarchical							
	Clustering, BIRCH, DBSCAN.							
	Text Processing :-							
	Boolean retrieval, Example IR problem, inverted index, processing Boolean							
4	queries, tokenization, stemming, phrase queries, vector space model, finite	9						
	automata and language model, query likelihood model, naïve bayes text							
	classification.							

Suggestion on Project Topics

Students may select a suitable real world scenario and perform data analysis using appropriate tools. A few sample topics are given below.

- 1. Develop a system to analyse social media posts for sentiment and detect trends over time. The system will gather posts from various social media platforms, analyse the sentiment of these posts, and identify trending topics or keywords. The insights gained can be used for market research, brand monitoring, or understanding public opinion.
- 2. Develop a system to detect and analyse topics from social media posts. The system will collect posts related to specific keywords or hashtags, perform topic modelling to identify and categorize main discussion themes, and visualize topic trends over time.
- 3. Develop a system to analyse and mine data from student marks to uncover patterns, trends, and insights related to academic performance. The system will process historical student performance data to identify factors influencing grades, detect patterns in performance, and provide predictive analytics to assist in improving student outcomes.

Course Assessment Method (CIE: 60 marks, ESE: 40 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Project	Internal Ex-1	Internal Ex-2	Total	
5	30	12.5	12.5	60	

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• 2 questions will be given from each module, out	
module.	of which 1 question should be answered. Each	
• Total of 8 Questions,	question can have a maximum of 2 subdivisions.	40
each carrying 2 marks	Each question carries 6 marks.	
(8x2 =16 marks)	(4x6 = 24 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome					
CO1	Explain the key concepts of data analytics	K2				
CO2	Apply appropriate techniques to convert raw data into suitable format for practical data analytics tasks	К3				
CO3	Extend the concept of association rule mining in real world scenario	К3				
CO4	Apply appropriate clustering and classification algorithms for various applications and extend data analytics methods to the new domains of data.	K3				
CO5	Demonstrate the basics of text analytics and text classification.	К3				
CO6	Design and implement real world applications in the domain of data analytics.	К3				

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3										3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3									3
CO5	3	3	3									
CO6	3	3	3	3	3							3

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Introduction to Statistics and Data Analysis	Christian Heumann and Michael Schomaker	Springer	1/e, 2016					
2	Data Mining Concepts and Techniques	Jiawei Han and Micheline Kamber	Elsevier	3/e, 2012					

Reference Books								
Sl. No	Title of the Book	Title of the BookName of the Author/s		Edition and Year				
1	Introduction to Information Retrieval	Christopher D. Manning, Prabhakar Raghavan, Hinrich Schutze	Cambridge University Press	1/e, 2008				
2	Mining Text Data	Charu C. Aggarwal, Cheng Xiang Zhai	Springer	1/e, 2012				
3	Analytics in a Big Data World: The Essential Guide to Data Science and its Business Intelligence and Analytic Trends	Bart Baesens	John Wiley	1/e, 2013				
4	Introduction to Data Mining	Pang-Ning Tan, Michael Steinbach and Vipin Kumar	Pearson Education	1/e, 2007				

Video Links (NPTEL, SWAYAM)					
Sl. No.	Link ID				
1	https://archive.nptel.ac.in/noc/courses/noc19/SEM1/noc19-cs15/				
2	https://onlinecourses.swayam2.ac.in/cec19_cs01/preview				

PBL Course Elements

L: Lecture	R: Project (1 Hr.), 2 Faculty Members				
(3 Hrs.)	Tutorial	Practical	Presentation		
Lecture delivery	Project identification	Simulation/ Laboratory Work/ Workshops	Presentation (Progress and Final Presentations)		
Group discussion	Project Analysis	Data Collection	Evaluation		
Question answer Sessions/ Brainstorming Sessions	Analytical thinking and self-learning	Testing	Project Milestone Reviews, Feedback, Project reformation (If required)		
Guest Speakers (Industry Experts)	Case Study/ Field Survey Report	Prototyping	Poster Presentation/ Video Presentation: Students present their results in a 2 to 5 minutes video		

Assessment and Evaluation for Project Activity

Sl. No	Evaluation for	Allotted Marks
1	Project Planning and Proposal	5
2	Contribution in Progress Presentations and Question Answer Sessions	4
3	Involvement in the project work and Team Work	3
4	Execution and Implementation	10
5	Final Presentations	5
6	Project Quality, Innovation and Creativity	3
	Total	30

1. Project Planning and Proposal (5 Marks)

- Clarity and feasibility of the project plan
- Research and background understanding
- Defined objectives and methodology

2. Contribution in Progress Presentation and Question Answer Sessions (4 Marks)

- Individual contribution to the presentation
- Effectiveness in answering questions and handling feedback

3. Involvement in the Project Work and Team Work (3 Marks)

- Active participation and individual contribution
- Teamwork and collaboration

4. Execution and Implementation (10 Marks)

- Adherence to the project timeline and milestones
- Application of theoretical knowledge and problem-solving
- Final Result

5. Final Presentation (5 Marks)

- Quality and clarity of the overall presentation
- Individual contribution to the presentation
- Effectiveness in answering questions

6. Project Quality, Innovation, and Creativity (3 Marks)

- Overall quality and technical excellence of the project
- Innovation and originality in the project
- Creativity in solutions and approaches

DATA STRUCTURES

Course Code	OECST611	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To provide the learner a comprehensive understanding of data structures and algorithms.
- 2. To prepare them for advanced studies or professional work in computer science and related fields.

Module No.	Syllabus Description	Contact Hours
1	Basic Concepts of Data Structures Definitions; Data Abstraction; Performance Analysis - Time & Space Complexity, Asymptotic Notations; Polynomial representation using Arrays, Sparse matrix (<i>Tuple representation</i>); Stacks and Queues - Stacks, Multi-Stacks, Queues, Circular Queues;	9
2	Linked List and Memory Management Singly Linked List - Operations on Linked List, Stacks and Queues using Linked List, Polynomial representation using Linked List; Doubly Linked List.	9
3	Trees and Graphs Trees :- Representation Of Trees; Binary Trees - Types and Properties, Binary Tree Representation, Tree Operations, Tree Traversals; Binary Search Trees - Binary Search Tree Operations; Graphs :- Definitions; Representation of Graphs; Depth First Search and Breadth First Search.	9

	Sorting and Searching	
4	Sorting Techniques :- Selection Sort, Insertion Sort, Quick Sort, Merge Sort; Searching Techniques - Linear Search, Binary Search, Hashing - Hashing functions : Division; Collision Resolution : Linear probing, Open hashing.	9

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24 marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Identify appropriate data structures for solving real world problems.	K3
CO2	Describe and implement linear data structures such as arrays, linked lists, stacks, and queues.	K3
CO3	Describe and Implement non linear data structures such as trees and graphs.	К3
CO4	Select appropriate searching and sorting algorithms to be used in specific circumstances.	K3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3									3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books								
Sl. No	Title of the Book Name of the Author/s		Name of the Publisher	Edition and Year					
1	Fundamentals of Data Structures in C	Ellis Horowitz, Sartaj Sahni and Susan Anderson-Freed,	Universities Press	2/e, 2007					
2	Introduction to Algorithms	Thomas H Cormen, Charles Leisesrson, Ronald L Rivest, Clifford Stein	PHI	3/e, 2009					

	Reference Books				
Sl. No	Title of the Book	Book Name of the Author/s		Edition and Year	
1	Classic Data Structures	Samanta D.	Prentice Hall India.	2/e, 2018	
2	Data Structures and Algorithms	Aho A. V., J. E. Hopcroft and J. D. Ullman	Pearson Publication.	1/e, 2003	
3	Introduction to Data Structures with Applications	Tremblay J. P. and P. G. Sorenson	Tata McGraw Hill.	2/e, 2017	
4	Theory and Problems of Data Structures	Lipschuts S.	Schaum's Series	2/e, 2014	

Video Links (NPTEL, SWAYAM)				
Module No.	Link ID			
1	https://nptel.ac.in/courses/106102064			
2	https://ocw.mit.edu/courses/6-851-advanced-data-structures-spring-2012/			

DATA COMMUNICATION

(Common to CS/CM/CD/CA)

Course Code	OECST612	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To understand the details of data communication at the lower level and the associated issues.
- **2.** To gain insight into the important aspects of data communication and computer networking systems and to apply the in practical applications.

Module No.	Syllabus Description			
1	Communication model - Simplex, Half duplex, Full duplex transmission. Periodic analog signals - Sine wave, Amplitude, Phase, Wavelength, Time and frequency domain, Bandwidth. Analog & digital data and signals. Transmission impairments - Attenuation, Delay distortion, Noise. Data rate limits - Noiseless channel, Nyquist bandwidth, Noisy channel, Shannon's capacity formula. Guided transmission media - Twisted pair, Coaxial cable, Optical fiber. Unguided media - Radio waves, Terrestrial microwave, Satellite microwave, Infrared. Wireless propagation - Ground wave propagation, Sky wave propagation, Line-of-Sight (LoS) propagation.	10		
2	Digital data to digital signal – Non-Return-to-Zero (NRZ), Return-to-Zero (RZ), Multilevel binary, Biphase. Analog data to digital signal - Sampling theorem, Pulse Code Modulation (PCM), Delta Modulation (DM). Digital data to analog signal - Amplitude Shift Keying (ASK), Frequency Shift Keying	9		

	(FSK), Phase Shift Keying (PSK). Analog data to analog signal - Amplitude Modulation (AM), Frequency Modulation (FM), Phase Modulation (PM).	
3	Multiplexing - Frequency Division Multiplexing (FDM), Wavelength Division Multiplexing (WDM), Time Division Multiplexing (TDM), Characteristics, Synchronous TDM, Statistical TDM. Spread spectrum techniques - Direct Sequence Spread Spectrum (DSSS), Frequency Hopping Spread Spectrum (FHSS), Code Division Multiplexing, Code Division Multiple Access (CDMA).	8
4	Digital data communication techniques - Asynchronous transmission, Synchronous transmission. Detecting and correcting errors - Types of errors, Parity check, Checksum, Cyclic Redundancy Check (CRC), Forward Error Correction (FEC), Hamming distance, Hamming code. Basic principles of switching - Circuit switching, Packet switching, Message switching.	9

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3	00
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Identify the characteristics of signals for analog and digital transmissions so as to define the associated real world challenges.	K3
CO2	Select transmission media based on characteristics and propagation modes.	K3
CO3	Choose appropriate signal encoding techniques for a given scenario	K3
CO4	Illustrate multiplexing and spread spectrum technologies	K2
CO5	Use error detection, correction and switching techniques in data communication	K3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3	2								3
CO3	3	3		2								3
CO4	3	3	3	2								3
CO5	3	3	3	2								3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Data Communications and Networking	Forouzan B. A	McGraw Hill	6/e, 2019		
2	Data and Computer Communication	William Stallings	Pearson	10/e, 2016		

	Reference Books				
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
1	Mobile Communications	Schiller J	Pearson	2/e, 2009	
2	Fundamentals of Networking and Communication	Curt M. White	Cengage	7/e, 2010	

Video Links (NPTEL, SWAYAM)				
Module	Link ID			
No.				
1	https://nptel.ac.in/courses/106105082			

FOUNDATIONS OF CRYPTOGRAPHY

Course Code	OECST613	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Develop a foundational understanding of mathematical concepts in cryptography,
- 2. Gain comprehensive knowledge of cryptographic methods.
- **3.** Understand the principles and need for computer security.

Module No.	Syllabus Description	Contact Hours
1	Integer Arithmetic – Divisibility, Greatest Common Divisor Euclid's and Extended Euclid's Algorithm for GCD; Modular Arithmetic – Operations, Properties, Polynomial Arithmetic; Algebraic Structures – Group Ring Field.	9
2	Prime numbers and Prime Factorisation - Primitive Roots, Existence of Primitive Roots for Primes, Fermat's Theorem, Primality Testing, Euler's Theorem, Euler's Totient Function, Discrete Logarithms, Modular Arithmetic, Chinese Remainder Theorem.	9
3	Principles of security - Types of Security attacks, Security services, Security Mechanisms; Cryptography - Introduction, cryptographic notations, substitution techniques, Transposition Techniques, limitations of classical cryptography.	9
4	Symmetric key Ciphers - Block Cipher principles & Algorithms- DES, AES, Differential and Linear Cryptanalysis; Asymmetric Key Ciphers- RSA, ECC; Hash Functions - MD5, SHA-1.	9

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0)
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the integer arithmetic operations including divisibility and GCD algorithms, modular arithmetic operations and properties, polynomial arithmetic, and algebraic structures such as groups, rings, and fields.	K2
CO2	Describe the number theory concepts essential for cryptographic applications and mathematical problem-solving.	K2
СО3	Explain the security principles, types of attacks, and protective measures, alongside a thorough understanding of cryptographic techniques and their applications in securing data.	K2
CO4	Discuss symmetric and asymmetric key cryptography, including block cipher principles, algorithms, public key cryptosystems, and hash functions	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2										2
CO2	2	2										2
CO3	2	2										2
CO4	2	2										2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Cryptography & Network Security	Behrouz A. Forouzan	McGraw Hill	3/e, 2007		
2	Security in Computing	Charles P. Pfleeger, Shari L. Pfleeger, Jonathan Margulies	Prentice Hall	5/e, 2015		
3	Introduction to Cryptography: Principles and Applications	H. Delfs, H. Knebl	Springer	1/e, 2002		
4	A Classical Introduction to Cryptography: Applications for Communications Security	Serge Vaudenay	Springer	1/e, 2009		

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Cryptography and Network Security	William Stallings	Pearson Education	7/e,2017			

	Video Links (NPTEL, SWAYAM)					
Module	Link ID					
No.						
1	https://archive.nptel.ac.in/courses/111/101/111101137/					
2	https://nptel/courses/video/106105031/L17.html					
3	https://onlinecourses.nptel.ac.in/noc22_cs90/preview					

MACHINE LEARNING FOR ENGINEERS

(Common to CS/CA/CD/CM/CR/AD/AM/AI)

Course Code	OECST614	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To provide the basic concepts and algorithms in machine learning.
- 2. To discuss the standard and most popular supervised and unsupervised learning algorithms.

Module	Syllabus Description	Contact
No.	Synabus Description	Hours
1	 Introduction to ML Machine Learning vs. Traditional Programming, Machine learning paradigms - supervised, semi-supervised, unsupervised, reinforcement learning. Basics of parameter estimation - maximum likelihood estimation (MLE) and maximum aposteriori estimation (MAP), Bayesian formulation. Supervised Learning Feature Representation and Problem Formulation, Role of loss functions and optimization Regression - Linear regression with one variable, Linear regression with multiple variables - solution using gradient descent algorithm and matrix method. 	10
2	Classification - Naïve Bayes, KNN Generalisation and Overfitting - Idea of overfitting, LASSO and RIDGE regularization, Idea of Training, Testing, Validation	8

8
10
_

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3 sub	00
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Illustrate Machine Learning concepts and basic parameter estimation methods	K2
CO2	Demonstrate supervised learning concepts (regression, classification)	K3
CO3	Illustrate the concepts of Multilayer neural network and Decision trees	K3
CO4	Describe unsupervised learning concepts and dimensionality reduction techniques	К3
C05	Use appropriate performance measures to evaluate machine learning models	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3								2
CO2	3	3	3	3	2							2
CO3	3	3	3	3	2							2
CO4	3	3	3	3	2							2
CO5	3	3	3	3	2							2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books									
Sl. No	Title of the Book	Name of the	Name of the Publisher	Edition and Vear						
1	Introduction to Machine Learning	Ethem Alpaydin	MIT Press	2/e, 2010						
2	Data Mining and Analysis:	Mohammed J. Zaki,	Cambridge	1/e 2016						
2	Fundamental Concepts and Algorithms	Wagner Meira	University Press	170, 2010						

Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Machine Learning	Tom Mitchell	McGraw-Hill	1997				
2	Applied Machine Learning	M Gopal	Pearson	2/e, 2018				
3	Neural Networks for Pattern Recognition	Christopher Bishop	Oxford University Press	1995				
4	Machine Learning: A Probabilistic Perspective	Kevin P Murphy	MIT Press	1/e, 2012				
5	The Elements Of Statistical Learning	Trevor Hastie, Robert Tibshirani, Jerome Friedman	Springer	2/e, 2007				

Video Links (NPTEL, SWAYAM)							
Module	Link D						
No.							
1	https://youtu.be/fC7V8QsPBec?si=8kqBn7x1RG5V1J						
2	https://youtu.be/g_LURKuIj4?si=Xj10NPfMfpQSOhVx						
3	https://youtu.be/yG1nETGyW2E?si=yS1xpeWuFAUQBf7-						
4	https://youtu.be/zop2zuwF_bc?si=W7TpSHLdi4rykva4						

ARTIFICIAL INTELLIGENCE

Course Code	OECMT615	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To lay a solid foundation of the important abstractions, techniques, and reasoning for intelligent systems.
- 2. To enable the learners to understand the basic principles of Reinforcement Learning.

Module No.	Syllabus Description	Contact Hours
1	 Introduction to Artificial Intelligence:- Introduction, Foundation and history of AI Agents and Environments; The concept of rationality; The nature of environments, Structure of agents. Problem solving Agents Well-defined problems and solutions, Formulating problems; Example problems- vacuum world, 8-puzzle, 8-queens. 	8
2	Searching:- Depth First Search, Breadth First Search, Iterative Deepening Search. Heuristic Search strategies - Heuristic functions, The effect of heuristic accuracy on performance; Generate and test, Greedy best first search, A* algorithm, Constraint satisfaction problems, Adversarial search - Games, Optimal Decision in games, The minimax algorithm, Alpha–beta pruning.	10
3	Knowledge-Based Agents :- The Wumpus World, Logic, Propositional Logic, Reasoning Patterns in Propositional Logic, First order logic, Inference in first order logic, propositional vs. first order inference, unification & lifts forward chaining, Backward chaining.	8
4	Reinforcement Learning :- Learning from Rewards, Passive Reinforcement Learning, Active Reinforcement Learning, Generalization in Reinforcement	10

I continue A multication of Definition of I continue	Reinforcement	Inverse	and	Apprenticeship	Search,	Policy	Learning,
Learning, Applications of Reinforcement Learning			ming	einforcement Lear	ions of Re	Applicat	Learning,

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. 	
carrying 3 marks (8x3 =24 marks)	 Each question can have a maximum of 3 subdivisions. (4x9 = 36 marks) 	60

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain how intelligent agents can solve problems.	K2
CO2	Use the different types of search methods to solve various problems.	К3
CO3	Formulate knowledge representation and examine resolution in propositional logic and first order logic.	К3
CO4	Utilize reinforcement learning techniques to create intelligent agents.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	2	-	-	-	-	-	-	-	2
CO2	3	3	3	2	-	-	-	-	-	-	-	2
CO3	2	2	2	2	-	-	-	-	-	-	-	2
CO4	3	2	2	2	-	-	-	-	-	-	-	2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Artificial Intelligence – A Modern Approach	Stuart Russel, Peter Norvig	Pearson Education	4/e, 2021						
2	Artificial Intelligence	Kevin Knight, Elaine Rich, Shivashankar B. Nair	Tata McGraw-Hill	3/e, 2009						

	Reference Books										
Sl. No	Title of the Book	Title of the BookName of the Author/s									
1	Introduction to Artificial Intelligence and Expert Systems	Dan W. Patterson	Pearson Education	1/e, 2015							
2	Artificial Intelligence: Structures and Strategies for Complex Problem Solving	George F. Luger	Pearson Education	6/e, 2009							
3	Artificial Intelligence : Making a System Intelligent	Nilakshi Jain	Wiley	1/e, 2019							

	Video Links (NPTEL, SWAYAM)								
Module No.	Link ID								
1	https://www.youtube.com/watch?v=X_Qt0U66aH0								
2	https://www.youtube.com/watch?v=te1K8on1Pk0								
3	https://www.youtube.com/watch?v=SEJhMO1IXZs								
4	https://youtu.be/YaPSPu7K9S0?si=DizMPlZ9uVSy50iG								

Course Code	PCCML607	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:3:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Lab

NATURAL LANGUAGE PROCESSING LAB

Course Objectives:

- **1.** To enable the learners to design and implement natural language processing systems for real world applications.
- 2. To enable the learners to experience hands-on knowledge on natural language processing.

Expt. No.	Experiments									
1	Acquire text data from a standard dataset such as "20 Newsgroup" (https://www.kaggle.com/datasets/crawford/20-newsgroups). Perform text extraction, clean-up, and pre-processing tasks such as tokenization, stemming, lemmatization, and stop-word removal.									
2	Implement basic vectorization approaches like One-Hot Encoding, Bag of Words, and TF-IDF, comparing these methods on a sample dataset.									
3	Explore word embeddings using Word2Vec, GloVe, and Doc2Vec. Visualize word embeddings and analyse their effectiveness in capturing semantic relationships.									
4	Create a pipeline for text classification, including feature extraction and model selection (e.g., Naïve Bayes, Logistic Regression, SVM). Apply it to a sentiment analysis task.									
5	Tune hyper-parameters for Naïve Bayes, Logistic Regression, and SVM models to improve sentiment classification accuracy									
6	Develop a Named Entity Recognition (NER) system using sequence labelling techniques that handles ambiguity in NER, Evaluate the NER model.									
7	Build a general IE pipeline, focusing on extracting structured information such as names, dates, and relations from unstructured text.									
8	Implement supervised learning approaches to relation detection and classification. Apply them to extract relationships between entities in a text corpus.									
9	Build an inverted index, applying term weighting and document scoring techniques. Use it to evaluate the performance of an IR system on a sample dataset.									
10	Implement a basic neural network model for machine translation and a factoid question- answering system, including question processing, passage retrieval, and answer generation.									
	Practice Questions (Optional)									
1	Load a text dataset. Apply tokenization, stop-word removal, and stemming/lemmatization. Compare the results before and after pre-processing.									

2	Convert a text dataset into feature vectors using One-Hot Encoding and TF-IDF. Compare
-	their effectiveness and sparsity.
3	Train Word2Vec embeddings on a dataset. Visualize using PCA or t-SNE. Analyse word
5	relationships.
4	Implement a Naïve Bayes classifier for sentiment analysis. Test different Laplace smoothing
•	values and observe the impact.
5	Train a logistic regression model on a text dataset. Compare L1 and L2 regularization effects
5	on performance.
6	Implement an SVM model using linear, polynomial, and RBF kernels. Compare their
Ŭ	performance on sentiment classification
7	Develop an NER system using sequence labelling. Test with different features (e.g., POS
,	tags) and evaluate with F1 score.
8	Handle ambiguous entities (e.g., "Apple") in an NER system. Implement strategies to
Ũ	resolve ambiguity and evaluate effectiveness.
9	Build an information extraction pipeline to extract entities and relationships from
	unstructured text. Evaluate extraction accuracy.
10	Implement a supervised model for relation detection and classification. Evaluate its
	performance using precision, recall, and F1 score.
11	Construct an inverted index for a text corpus. Implement search functionality for keyword
	retrieval and analyse performance.
12	Implement TF-IDF for term weighting and document scoring. Test with a sample query and
	evaluate the results
13	Develop a basic factoid question-answering system. Implement question processing,
	passage retrieval, and answer extraction.
14	Implement a neural network model for machine translation using a parallel corpus. Train
	and evaluate the model's translation accuracy.

Course Assessment Method (CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment)	Internal Examination	Total
5	25	20	50

End Semester Examination Marks (ESE):

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	Result with valid inference/ Quality of Output	Viva voce	Record	Total
10	15	10	10	5	50

- Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.
- Endorsement by External Examiner: The external examiner shall endorse the record

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
C01	Identify and explain foundational concepts and techniques in Natural Language Processing, including text pre-processing and vectorization.	К3
CO2	Implement and apply various text representation techniques, such as One-Hot Encoding and TF-IDF, in practical NLP tasks.	К3
СО3	Study the effectiveness of different machine learning models for tasks like text classification and named entity recognition.	К3
CO4	Evaluate NLP models and pipelines using relevant metrics such as precision, recall, and F1 score.	K4
CO5	Design and develop advanced NLP systems, including question-answering and machine translation models.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO- PO Mapping (Mapping of Course Outcomes with Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3							3
CO2	3	3	3	3	3							3
CO3	3	3	3	3	3							3
CO4	3	3	3	3	3							3
CO5	3	3	3	3	3							3

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Natural Language Processing with Python	Steven Bird, Ewan Klein and Edward Loper	O'Reilly Media	1/e, 2009		
2	Natural Language Processing: Python and NLTK	Nitin Hardeniya, Jacob Perkins, Deepti Chopra, Nisheeth Joshi, Iti Mathur	Packt Publishing	1/e, 2016		
3	Speech and Language Processing	Daniel Jurafsky and James H. Martin	Pearson Education India	2/e, 2013		

Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
1	Natural Language Understanding	James Allen	Pearson	2/e, 1994	
2	Practical Natural Language Processing: A Comprehensive Guide to Building Real-World NLP Systems	Sowmya Vajjala, Bodhisattwa Majumder, Anuj Gupta and Harshit Surana	O'Reilly Media	1/e, 2020	

Video Links (NPTEL, SWAYAM)					
Sl. No.	Link ID				
1	https://www.youtube.com/playlist?list=PLoROMvodv4rMFqRtEuo6SGjY4XbRIVRd4				
Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

• Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted